C++计算逆矩阵

1这篇文章包含了逆运算在内的常见矩阵计算:

https://blog.csdn.net/sinat_36219858/article/details/78164606

2

/*************************************************************************
    > File Name: inv.cpp
    > Author: ims
    > Created Time: 2018/8/1 22:06:12
 ************************************************************************/
#include <stdio.h>   
#include <iostream>  
using namespace std;
double det(int n, double *aa)
{
	if (n == 1)
		return aa[0];
	double *bb = new double[(n - 1)*(n - 1)];//创建n-1阶的代数余子式阵bb    
	int mov = 0;//判断行是否移动   
	double sum = 0.0;//sum为行列式的值  
	for (int arow = 0; arow<n; arow++) // a的行数把矩阵a(nn)赋值到b(n-1)  
	{
		for (int brow = 0; brow<n - 1; brow++)//把aa阵第一列各元素的代数余子式存到bb  
		{    
			mov = arow > brow ? 0 : 1; //bb中小于arow的行,同行赋值,等于的错过,大于的加一  
			for (int j = 0; j<n - 1; j++)  //从aa的第二列赋值到第n列  
			{
				bb[brow*(n - 1) + j] = aa[(brow + mov)*n + j + 1];
			}
		}
		int flag = (arow % 2 == 0 ? 1: -1);//因为列数为0,所以行数是偶数时候,代数余子式为1.  
		sum += flag* aa[arow*n] * det(n - 1, bb);//aa第一列各元素与其代数余子式积的和即为行列式
	}
	delete[]bb;
	return sum;
}
 
void inverse(int n, double *aa)
{
	double det_aa = det(n, aa);
	cout << "输入矩阵的行列式:" << det_aa << endl;
	if (det_aa == 0)
	{
		printf("行列式为0 ,不能计算逆矩阵。\n");
		return;
	}
	double *adjoint = new double[n*n];
	double *bb = new double[(n - 1)*(n - 1)];//创建n-1阶的代数余子式阵bb   
 
	int pi, pj, q;
	for (int ai = 0; ai<n; ai++) // a的行数把矩阵a(nn)赋值到b(n-1)  
	{
		for (int aj = 0; aj<n; aj++)
		{
			for (int bi = 0; bi<n - 1; bi++)//把元素aa[ai][0]代数余子式存到bb[][]  
			{
				for (int bj = 0; bj<n - 1; bj++)//把元素aa[ai][0]代数余子式存到bb[][]  
				{
					if (ai>bi)    //ai行的代数余子式是:小于ai的行,aa与bb阵,同行赋值  
						pi = 0;
					else
						pi = 1;     //大于等于ai的行,取aa阵的ai+1行赋值给阵bb的bi行  
					if (aj>bj)    //ai行的代数余子式是:小于ai的行,aa与bb阵,同行赋值  
						pj = 0;
					else
						pj = 1;     //大于等于ai的行,取aa阵的ai+1行赋值给阵bb的bi行  
 
					bb[bi*(n - 1) + bj] = aa[(bi + pi)*n + bj + pj];
				}
			}
			printf("aa[%d][%d]的余子式\n", ai, aj);
			for (int i = 0; i < n - 1; i++)
			{
				for (int j = 0; j < n - 1; j++)
				{
					printf("%lf     ",  bb[i*(n - 1) + j]);
				}
				printf(" \n");
			}
			if ((ai + aj) % 2 == 0)  q = 1;//因为列数为0,所以行数是偶数时候,代数余子式为-1.  
			else  q = (-1);
			adjoint[ai*n + aj] = q*det(n - 1, bb);
		}
	}
    for(int i = 0; i < n; i++)//adjoint 转置
    {
        for(int j = 0; j < i; j++)
        {
            double tem = adjoint[i*n + j];
            adjoint[i*n + j] =  adjoint[j*n + i];
            adjoint[j*n + i] =  tem;
        }
    }
	printf("伴随阵: \n");
	for (int i = 0; i < n; i++) //打印伴随阵  
	{
		for (int j = 0; j < n; j++)
		{
			cout << adjoint[i*n + j] << "\t";
		}
		cout << endl;
	}
	printf("逆矩阵: \n");
	for (int i = 0; i < n; i++) //打印逆矩阵  
	{
		for (int j = 0; j < n; j++)
		{
			aa[i*n + j] = adjoint[i*n + j] / det_aa;
			cout << aa[i*n + j] << "\t";
		}
		cout << endl;
	}
	delete[]adjoint;
	delete[]bb;
}
int main()
{
	int n = 0; //阶数  
	printf("输入阶数:");
	scanf("%d", &n); /*读入阶数*/
	double *aa = new double[n*n];
	printf("输入矩阵:\n");
	for (int i = 0; i < n*n; i++)
		cin >> aa[i];
	inverse(n, aa);
	delete[]aa;
}

 

  • 9
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
要利用类实现矩阵矩阵计算,需要以下步骤: 1. 定义一个矩阵类,包含矩阵的行数、列数和元素值等信息,以及实现矩阵加减、乘法、转置等基本运算。 2. 实现高斯-约旦消元法(Gauss-Jordan elimination)求解矩阵矩阵。具体步骤如下: - 将原矩阵和单位矩阵按行拼接成增广矩阵; - 对增广矩阵进行初等行变换,将其变为左半部分为单位矩阵的形式; - 右半部分即为所求的矩阵。 3. 实现矩阵行列式的计算,以判断矩阵是否可。 下面是一个简单的示例代码,仅供参考: ```c++ #include <iostream> #include <vector> using namespace std; class Matrix { public: Matrix(int r = 0, int c = 0) : rows(r), cols(c), data(r * c) {} int rows, cols; vector<double> data; double& operator()(int i, int j) { return data[i * cols + j]; } friend Matrix operator+(const Matrix& a, const Matrix& b); friend Matrix operator*(const Matrix& a, const Matrix& b); friend Matrix transpose(const Matrix& a); friend double det(const Matrix& a); friend Matrix inverse(const Matrix& a); }; Matrix operator+(const Matrix& a, const Matrix& b) { Matrix c(a.rows, a.cols); for (int i = 0; i < a.rows; i++) { for (int j = 0; j < a.cols; j++) { c(i, j) = a(i, j) + b(i, j); } } return c; } Matrix operator*(const Matrix& a, const Matrix& b) { Matrix c(a.rows, b.cols); for (int i = 0; i < a.rows; i++) { for (int j = 0; j < b.cols; j++) { for (int k = 0; k < a.cols; k++) { c(i, j) += a(i, k) * b(k, j); } } } return c; } Matrix transpose(const Matrix& a) { Matrix b(a.cols, a.rows); for (int i = 0; i < a.rows; i++) { for (int j = 0; j < a.cols; j++) { b(j, i) = a(i, j); } } return b; } double det(const Matrix& a) { if (a.rows != a.cols) { throw "not a square matrix"; } int n = a.rows; Matrix b = a; double d = 1; for (int i = 0; i < n; i++) { int p = i; for (int j = i + 1; j < n; j++) { if (abs(b(j, i)) > abs(b(p, i))) { p = j; } } if (p != i) { swap(b.data.begin() + i * n, b.data.begin() + p * n); d = -d; } if (b(i, i) == 0) { return 0; } for (int j = i + 1; j < n; j++) { double f = b(j, i) / b(i, i); for (int k = i; k < n; k++) { b(j, k) -= f * b(i, k); } } d *= b(i, i); } return d; } Matrix inverse(const Matrix& a) { if (a.rows != a.cols) { throw "not a square matrix"; } int n = a.rows; Matrix b(n, 2 * n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { b(i, j) = a(i, j); } b(i, n + i) = 1; } for (int i = 0; i < n; i++) { int p = i; for (int j = i + 1; j < n; j++) { if (abs(b(j, i)) > abs(b(p, i))) { p = j; } } if (p != i) { swap(b.data.begin() + i * 2 * n, b.data.begin() + p * 2 * n); } if (b(i, i) == 0) { throw "matrix is not invertible"; } double f = b(i, i); for (int j = i; j < 2 * n; j++) { b(i, j) /= f; } for (int j = 0; j < n; j++) { if (j != i) { f = b(j, i); for (int k = i; k < 2 * n; k++) { b(j, k) -= f * b(i, k); } } } } Matrix c(n, n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c(i, j) = b(i, n + j); } } return c; } int main() { Matrix a(3, 3); a(0, 0) = 2; a(0, 1) = 1; a(0, 2) = 1; a(1, 0) = 4; a(1, 1) = -6; a(1, 2) = 0; a(2, 0) = -2; a(2, 1) = 7; a(2, 2) = 2; cout << "A =\n" << a.data[0] << " " << a.data[1] << " " << a.data[2] << "\n" << a.data[3] << " " << a.data[4] << " " << a.data[5] << "\n" << a.data[6] << " " << a.data[7] << " " << a.data[8] << endl; cout << "det(A) = " << det(a) << endl; Matrix b = inverse(a); cout << "A^-1 =\n" << b.data[0] << " " << b.data[1] << " " << b.data[2] << "\n" << b.data[3] << " " << b.data[4] << " " << b.data[5] << "\n" << b.data[6] << " " << b.data[7] << " " << b.data[8] << endl; Matrix c = a * b; cout << "A * A^-1 =\n" << c.data[0] << " " << c.data[1] << " " << c.data[2] << "\n" << c.data[3] << " " << c.data[4] << " " << c.data[5] << "\n" << c.data[6] << " " << c.data[7] << " " << c.data[8] << endl; return 0; } ``` 这段代码定义了一个矩阵类 Matrix,包含了矩阵的基本运算和矩阵计算。在 main 函数中,我们定义了一个 3x3 的矩阵 A,计算其行列式和矩阵,并验证 A 乘以 A 的矩阵是否得到单位矩阵。注意,这里的矩阵计算使用的是高斯-约旦消元法,而不是传统的伴随矩阵法,因为前者更简单、更高效。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值