先从简单的离散型随机变量看起
离散型随机变量
P{
X=ak}=pk,k=1,2,3,...,n
其中:
∑i=1npi=1
那么它的期望值是:
E(X)=∑kakpk
以上都是中学数学知识,那么到了高等数学的概率论与数理统计这门课才开始讨论连续随机变量的情况。
如果随机变量是连续的,且它的概率密度函数是 f(x) ,那么它的数学期望值是:
E(X)=∫∞−∞xf(x)dx
方差为:
D(X)=E[(X−E(X))2]
正态分布也是我们很熟悉的分布情况了,高中大学数学都进行过学习讨论:
正态分布:
X∼N(μ,σ2)
概率密度函数为:
p(x)=12π−−√σ