高斯混合模型(Gaussian Mixture Model,GMM)

本文介绍了高斯混合模型(GMM),从离散型随机变量讲起,过渡到连续随机变量和正态分布。GMM是多个高斯分布的组合,用于表示复杂的数据分布。通过最大似然估计法来估计模型参数,包括迭代更新μk、Σk和πk。GMM的优化过程与K-means类似,通过不断迭代直至似然函数收敛。
摘要由CSDN通过智能技术生成

先从简单的离散型随机变量看起

离散型随机变量

P{ X=ak}=pk,k=1,2,3,...,n

其中:
i=1npi=1

那么它的期望值是:
E(X)=kakpk

以上都是中学数学知识,那么到了高等数学的概率论与数理统计这门课才开始讨论连续随机变量的情况。

如果随机变量是连续的,且它的概率密度函数是 f(x) ,那么它的数学期望值是:

E(X)=xf(x)dx

方差为:
D(X)=E[(XE(X))2]

正态分布也是我们很熟悉的分布情况了,高中大学数学都进行过学习讨论:

正态分布:

XN(μ,σ2)

概率密度函数为:
p(x)=12πσ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值