SVM最基本的应用是分类,特别是对于非线性以及多维数据的解决有很大的作用,最常见的应用就是自然语言处理。
下面,我来简单的介绍一下最基本的SVM。
如图:
在图中,有两组类别的数据叉(×)和圈(○),我们的目的是将他们能够区别开来,如何去做?在这个例子中,我们可以看到叉和圈都可以被红色和黄色的线区别开来,但是我们的目的不仅仅是区分样本中的数据,为了能够更好的区别后续的数据,可以看出红色的划分超平面(分割线)更加的合理。而我们要做点位工作就是尽量找出这条红色的划分超平面。
我们用来表示图中的划分超平面,为划分超平面的法向量,其维数是