支持向量机(SVM)的简单介绍

支持向量机(SVM)主要用于非线性及多维数据的分类,尤其在自然语言处理中有广泛应用。本文简要介绍了SVM的核心思想,通过示例解释了如何寻找最佳划分超平面,以实现样本的最大间隔分类。
摘要由CSDN通过智能技术生成

SVM最基本的应用是分类,特别是对于非线性以及多维数据的解决有很大的作用,最常见的应用就是自然语言处理。

下面,我来简单的介绍一下最基本的SVM。

如图:

在图中,有两组类别的数据叉(×)和圈(○),我们的目的是将他们能够区别开来,如何去做?在这个例子中,我们可以看到叉和圈都可以被红色和黄色的线区别开来,但是我们的目的不仅仅是区分样本中的数据,为了能够更好的区别后续的数据,可以看出红色的划分超平面(分割线)更加的合理。而我们要做点位工作就是尽量找出这条红色的划分超平面。

我们用w^{t}x+b=0来表示图中的划分超平面,w^{t}为划分超平面的法向量,其维数是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值