傅里叶变换基础

傅里叶变换基础

直观理解

在这里插入图片描述

在如上图所示的三维坐标系中,向量v的坐标可以分解为向量v与三个基向量的内积:
a=ve1b=ve2c=ve3 a=\mathbf{v} \cdot \mathbf{e}_{1} \quad b=\mathbf{v} \cdot \mathbf{e}_{2} \quad c=\mathbf{v} \cdot \mathbf{e}_{3}
同时,向量v可以表示为三个基向量按照v的坐标的合成:
v=ae1+be2+ce3 \mathbf{v}=a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{3}
因此,只要获得了坐标系的基向量,坐标系中任何向量分解与合成都可以利用基向量表示。基向量是一组线性无关的向量组,如上图的三个两两正交的向量。

直观上,傅里叶变换也是建立了一个坐标系,坐标系的基两两正交(这将在下面做出证明),任何一个信号都可以用这个坐标系中的基来进行分解与合成:

ejωte^{j \omega t}即为这个坐标系下的基,不同ω下ejωte^{j \omega t}两两正交(这将在下面做出证明),与上面两个公式类似,信号可以按照下面公式进行分解与合成:

分解
X(ω)=+x(t)ejωtdt=+x(t)ejωtdt X(\omega)=\int_{-\infty}^{+\infty} x(t) e^{j \omega t} d t=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
注意由于ejωte^{j \omega t}是复指数,计算内积时应取共轭。

合成
x(t)=+X(ω)ejωtdω x(t)=\int_{-\infty}^{+\infty} X(\omega) e^{j \omega t} d \omega

基本指数信号

我们分别约定ω和Ω分别代表连续时间域和离散时间域的频率。ejωte^{j \omega t}ejΩte^{j\Omega t}分别是连续时间域和离散时间域的指数信号,它们有着优秀的性质:

连续域指数信号ejωte^{j \omega t}的性质

1.这是一个周期信号,最小周期T=2π/ω.由于e2πj=1{e^{2\pi j}} = 1,所以周期性很容易看出来:
ejωt=ejω(t+kT)=ejω(t+k2πω) e^{j \omega t}=e^{j \omega(t+k T)}=e^{j \omega\left(t+k \frac{2 \pi}{\omega}\right)}
根据上面的公式也不难看出来,ω越大,信号震荡的速率越高。

2.当ω1|\omega_{1}|ω2|\omega_{2}|时,ejω1te^{j \omega_{1} t}ejω2te^{j \omega_{2} t}正交。这是一个很重要的性质,下面做一个简单的证明:

考虑到ejωte^{j \omega t}是周期信号,我们只需要证明他们在一个相同的周期内正交。假设T是这两个信号最小周期T1、T2的最小公倍数(其中,T1=2π/ω1T_{1}=2 \pi / \omega_{1},T2=2π/ω2T_{2}=2 \pi / \omega_{2}).
T=k1T1=k12πω1 and T=k2T2=k22πω2(k1,k2Z+) T=k_{1} T_{1}=k_{1} \frac{2 \pi}{\omega_{1}} \quad \text { and } \quad T=k_{2} T_{2}=k_{2} \frac{2 \pi}{\omega_{2}} \quad\left(k_{1}, k_{2} \in Z^{+}\right)
要证明这两个信号正交,只需证明它们的内积为0。需要注意的是这两个信号是指数,因此计算内积时需要计算后一个信号的共轭
0Tejω1tejω2tdt=0Tej(ω1ω2)tdt=1j(ω1ω2)ej(ω1ω2)tT0=1j(ω1ω2)(ej(k1k2)2π1)=0 \begin{array}{l}\int_{0}^{T} e^{j \omega_{1} t} e^{j \omega_{2} t} d t=\int_{0}^{T} e^{j\left(\omega_{1}-\omega_{2}\right) t} d t=\frac{1}{j\left(\omega_{1}-\omega_{2}\right)} e^{j\left(\omega_{1}-\omega_{2}\right) t} | \begin{array}{l}T \\0\end{array} \\=\frac{1}{j\left(\omega_{1}-\omega_{2}\right)}\left(e^{j\left(k_{1}-k_{2}\right) 2 \pi}-1\right)=0\end{array}
上面公式并不难,就不做详解了。

离散域指数信号ejΩte^{j\Omega t}的性质

1.并非对于所有的Ω来说,ejΩte^{j\Omega t}是周期信号。仅当Ω/2π是有理数(即Ω/2π=m/N)的时候,才是周期信号。这是因为当Ω/2π=m/N时,有:
ejΩn=ejΩ(n+N)=ej(Ωn+2πm) e^{j \Omega n}=e^{j \Omega(n+N)}=e^{j(\Omega n+2 \pi m)}
2.ejΩte^{j\Omega t}不是频率独立的(distinct),这是因为ejΩ0n=ej(Ω0±2πk)n{e^{j{\Omega _{\rm{0}}}n}} = {e^{j({\Omega _0} \pm 2\pi k)n}},所以Ω0\Omega_{0}(Ω0±2πk)(\Omega _0 \pm 2\pi k)对于信号的效果是一样的。

傅里叶变换的公式表示

通过上面的直观理解,我们可以给出傅里叶变化的公式:

信号分解:
X(ω)=+x(t)ejωtdt X(\omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
信号合成:
x(t)=12π+X(ω)ejωtdω x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(\omega) e^{j \omega t} d \omega
如果我们对信号的周期f更感兴趣,可以根据f=2π/ωf=2 \pi / \omega来用周期f代替频率ω:

信号分解:
X(f)=+x(t)ej2πftdt X(f)=\int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} d t
信号合成:
x(t)=+X(f)ej2πftdf x(t)=\int_{-\infty}^{+\infty} X(f) e^{j 2 \pi f t} d f
一个信号存在傅里叶变换需要满足 狄利克雷条件,它是一个充分不必要条件:

  1. 信号x(t)绝对可积。
    +x(t)dt< \int_{-\infty}^{+\infty}|x(t)| d t<\infty

  2. 在任何间隔内,信号x(t)的极大值和极小值的数目应是有限个。

  3. 在任何间隔内,信号x(t)连续或只有有限个第一类间断点

参考

中国大学慕课:数字图像处理与英语,浙江大学

A. V. Oppenheim, A. S. Willsky and I. T. Young,Signals and Systems, Prentice-Hall, 1983

发布了15 篇原创文章 · 获赞 17 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览