对傅立叶变换的理解(1)——基底变换

本文介绍了傅立叶变换的本质是基底变换,类比于线性代数中坐标系的变化。通过傅立叶变换,时域信号可以转换为频域表示,简化微分方程的求解。文章讨论了变换的几何意义,并引用了相关文献深入探讨傅立叶变换在电路分析和信号处理中的应用。
摘要由CSDN通过智能技术生成

上学期考完DQE,重拾了傅立叶变换,对他有了不同角度的认识。以前对他的认识只停留在定义,性质和套公式做题上。只知道可以用来方便地解微分方程,尤其是在电路中存在电容电感的时候,可以用来判断一个系统的频率响应。

基底变换


我觉得其中一个最重要的理解是傅立叶变换是一种“change of basis”,变换基底的操作。这里要类比线性代数中的概念,也就是什么是“change of basis”。在线性代数中,如果有 y = A x , y ∈ C n , A ∈ C n × n , x ∈ C n y=Ax,y\in \mathbb{C}^n, A\in \mathbb{C}^{n\times n}, x\in\mathbb{C}^n y=AxyCn,ACn×n,xCn,我们认为向量 y y y 可以表示为 A A A 的列向量的线性组合,又 ∵ y = I y \because y=Iy y=Iy I I I 是单位阵,同理 y y y 可以表示为 I I I 的列向量的线性组合,所以将 y y y 表示为 A x Ax Ax 的过程就是将由 I I I 的列向量组成的基底变成由 A A A 的列向量组成的基底,从而 y y y 在相应基底下的坐标(或者说系数)从 y y y 变成了 x x x。或者写成 y = ∑ i = 1 n e i y i = ∑ i = 1 n a i x i y = \sum_{i=1}^n \mathbf{e}_i y_i = \sum_{i=1}^n \mathbf{a}_i x_i y=i=1neiyi=i=1naixi ,其中 e i , a i \mathbf{e}_i,\mathbf{a}_i ei,ai

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值