韦伯分布(Weibull)参数矩估计MATLAB实现

韦伯分布(Weibull)参数矩估计MATLAB实现

二参数韦伯分布概率密度函数

f ( x ) = β η ( x η ) β − 1 e − ( x η ) β , β > 0 , η > 0 , x ≥ γ ≥ 0 f(x)=\frac{\beta}{\eta}\left(\frac{x}{\eta}\right)^{\beta-1} e^{-\left(\frac{x}{\eta}\right)^{\beta}}, \beta>0, \eta>0, x \geq \gamma \geq 0 f(x)=ηβ(ηx)β1e(ηx)β,β>0,η>0,xγ0

其中, β \beta β是形状参数, η \eta η是尺度参数。

β 和 η \beta和\eta βη的矩估计

1. Weibull分布的k阶矩:

μ k = ( 1 η β ) − k β Γ ( 1 + k β ) \mu_{k}=\left(\frac{1}{\eta^{\beta}}\right)^{-\frac{k}{\beta}} \Gamma\left(1+\frac{k}{\beta}\right) μk=(ηβ1)βkΓ(1+βk)

其中, Γ \Gamma Γ是gamma函数:
Γ ( s ) = ∫ 0 ∞ x s − 1 e − x d x , ( s > 0 ) \Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x,(s>0) Γ(s)=0xs1exdx,(s>0)
推导过程:
E X k = ∫ 0 ∞ x k ⋅ β η β x β − 1 e − ( x n ) β d x = ∫ 0 ∞ β η k ( x η ) k + β − 1 e − ( x n ) β d ( x η ) = ∫ 0 ∞ η k ( x η ) k e − ( x n ) β d ( x η ) β = ∫ 0 ∞ η k x k β e − x d x = η k Γ ( k β + 1 ) \begin{array}{l} E X^{k}=\int_{0}^{\infty} x^{k} \cdot \frac{\beta}{\eta^{\beta}} x^{\beta-1} e^{-\left(\frac{x}{n}\right)^{\beta}} d x \\ =\int_{0}^{\infty} \beta \eta^{k}\left(\frac{x}{\eta}\right)^{k+\beta-1} e^{-\left(\frac{x}{n}\right)^{\beta}} d\left(\frac{x}{\eta}\right) \\ =\int_{0}^{\infty} \eta^{k}\left(\frac{x}{\eta}\right)^{k} e^{-\left(\frac{x}{n}\right)^{\beta}} d\left(\frac{x}{\eta}\right)^{\beta} \\ =\int_{0}^{\infty} \eta^{k} x^{\frac{k}{\beta}} e^{-x} d x \\ =\eta^{k} \Gamma\left(\frac{k}{\beta}+1\right) \end{array} EXk=0xkηββxβ1e(nx)βdx=0βηk(ηx)k+β1e(nx)βd(ηx)=0ηk(ηx)ke(nx)βd(ηx)β=0ηkxβkexdx=ηkΓ(βk+1)

2. 因此可以计算出一阶矩和二阶矩

m 1 = μ ^ k = ( 1 η ) 1 β Γ ( 1 + 1 β ) m 2 = μ ^ k 2 + σ ^ k 2 = [ 1 η ] 2 n { Γ ( 1 + 2 β ) − [ Γ ( 1 + 1 β ) ] 2 } \begin{aligned} m_{1} &=\hat{\mu}_{k}=\left(\frac{1}{\eta}\right)^{\frac{1}{\beta}} \Gamma\left(1+\frac{1}{\beta}\right) \\ m_{2}=\hat{\mu}_{k}^{2}+\hat{\sigma}_{k}^{2} &=\left[\frac{1}{\eta}\right]^{\frac{2}{n}}\left\{\Gamma\left(1+\frac{2}{\beta}\right)-\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2}\right\} \end{aligned} m1m2=μ^k2+σ^k2=μ^k=(η1)β1Γ(1+β1)=[η1]n2{Γ(1+β2)[Γ(1+β1)]2}

让m2除以m1的平方,我们可以得到:
σ ^ k 2 μ ^ k 2 = Γ ( 1 + 2 β ) − Γ 2 ( 1 + 1 β ) Γ 2 ( 1 + 1 β ) \frac{\hat{\sigma}_{k}^{2}}{\hat{\mu}_{k}^{2}}=\frac{\Gamma\left(1+\frac{2}{\beta}\right)-\Gamma^{2}\left(1+\frac{1}{\beta}\right)}{\Gamma^{2}\left(1+\frac{1}{\beta}\right)} μ^k2σ^k2=Γ2(1+β1)Γ(1+β2)Γ2(1+β1)
这正好是变异系数的平方,上式开方就是变异系数:
C V = Γ ( 1 + 2 β ) − Γ 2 ( 1 + 1 β ) Γ ( 1 + 1 β ) C V=\frac{\sqrt{\Gamma\left(1+\frac{2}{\beta}\right)-\Gamma^{2}\left(1+\frac{1}{\beta}\right)}}{\Gamma\left(1+\frac{1}{\beta}\right)} CV=Γ(1+β1)Γ(1+β2)Γ2(1+β1)

3. 我们可以借助变异系数CV来估计 β \beta β
  1. 首先我们定义一组候选 β \beta β,如 { β ∣ 0.1 < β < 10 } \{\beta|0.1<\beta<10\} {β0.1<β<10}的数组,根据这一系列候选 β \beta β计算出对应的 C V CV CV数组
  2. 然后根据数据的均值和方差计算数据的变异系数 C V ^ \hat{CV} CV^
  3. 找出 C V CV CV数组中和 C V ^ \hat{CV} CV^最接近的值,其对应的 β \beta β就是我们需要的估计值
4. 尺度参数 η \eta η可以利用下面的公式估计

η ^ = { x ˉ / Γ [ ( 1 / β ^ ) + 1 ] } \hat{\eta}=\{\bar{x} / \Gamma[(1 / \hat{\beta})+1]\} η^={xˉ/Γ[(1/β^)+1]}

其中 x ˉ \bar{x} xˉ是数据的均值。
下方参考文献给出尺度参数的计算公式如下:
η ^ = { x ˉ / Γ [ ( 1 / β ^ ) + 1 ] } β ˙ \hat{\eta}=\{\bar{x} / \Gamma[(1 / \hat{\beta})+1]\}^{\dot{\beta}} η^={xˉ/Γ[(1/β^)+1]}β˙
这应该是一种笔误,在实际测试时按照上述公式计算的不对,翻阅其他文献(如这篇)是没有指数项的。

MATLAB实现

function [beta,eta]=estimateweibullMOM(vec)
beta_vec=0.01:0.001:10;
g1=gamma(1+2./beta_vec);
g2=gamma(1+1./beta_vec);
cv=sqrt(g1-g2.^2)./g2;
mu=mean(vec);
cv_es=std(vec)/mean(vec);
[min_difference, array_position] = min(abs(cv - cv_es));
beta=beta_vec(array_position);
eta=(mu/gamma(1/beta+1));
end

代码测试:
使用MATLAB的wblrnd(η,β,10000,1)产生测试数据,使用上述方法进行参数估计。

βηβ(估计值)η(估计值)
423.97102.0077
131.00403.0231
0.40.50.41000.5440

参考文献

AlFawzan, Ma. Methods for estimating the parameters of the Weibull distribution[J]. Fawzan, 2000(10).

### 回答1: 在 MATLAB 中,可以使用 `wblpdf`、`wblcdf` 和 `wblinv` 函数来计算三参数 Weibull 分布的概率密度函数、累积分布函数和反函数。 假设 `a`、`b` 和 `c` 分别是三个参数,那么概率密度函数为: ```matlab f = @(x) (c / b) .* ((x - a) ./ b).^(c-1) .* exp(-((x - a) ./ b).^c) ``` 累积分布函数为: ```matlab F = @(x) 1 - exp(-((x - a) ./ b).^c) ``` 反函数为: ```matlab x = @(p) a + b * (-log(1 - p)).^(1/c) ``` 其中,`x` 是随机变量的值,`p` 是概率值。可以根据需要修改上述函数以适应不同的输入格式和参数设置。 ### 回答2: 三参数Weibull分布是一种常用的概率分布,它可以描述不同事件的发生概率。在MATLAB中,我们可以使用`wblfit`函数来进行三参数Weibull分布的拟合。具体使用方法如下: 首先,我们需要准备一个包含观测数据的向量,假设这个向量为`data`。 然后,我们可以使用以下语句来拟合三参数Weibull分布: ``` params = wblfit(data) ``` 这个语句会返回一个包含三个参数的向量`params`,其中第一个参数是形状参数`a`,第二个参数是尺度参数`b`,第三个参数是位置参数`c`。 接下来,我们可以使用`wblcdf`函数来计算在给定参数下的概率密度函数值: ``` x = 0:0.1:10; % 设置x的取值范围 y = wblcdf(x, params(1), params(2), params(3)); % 计算概率密度函数值 ``` 这个语句会返回向量`y`,其中包含了在给定参数下的概率密度函数值。 最后,我们可以使用`plot`函数将概率密度函数绘制出来: ``` plot(x, y) ``` 这个语句会在MATLAB图形窗口中绘制出三参数Weibull分布的概率密度函数曲线。 总之,通过这些步骤,我们可以在MATLAB中拟合和绘制三参数Weibull分布的概率密度函数。 ### 回答3: 三参数Weibull分布是一种常用的概率分布函数,可用于描述可靠性和寿命分析中的失效时间。 在MATLAB中,我们可以使用`wblpdf`函数计算三参数Weibull分布的概率密度函数(PDF)。它的语法是: ``` y = wblpdf(x,a,b,c) ``` 其中,`x`是自变量,代表失效时间;`a`是形状参数,决定了失效时间分布的斜率;`b`是尺度参数,决定了失效时间的尺度;`c`是阈值参数,决定了失效时间的起始点。函数返回的是`x`处的概率密度值。 另外,`wbldcdf`函数用于计算累积分布函数(CDF),`wblinv`函数用于计算反函数(即,给定概率,求对应的失效时间),`wblrnd`函数用于生成符合Weibull分布的随机数。 下面是一个例子,演示如何使用MATLAB绘制三参数Weibull分布的概率密度函数曲线: ```matlab % 定义参数 a = 2; % 形状参数 b = 3; % 尺度参数 c = 0; %阈值参数 % 生成自变量x的取值范围 x = 0:0.1:10; % 计算概率密度值 y = wblpdf(x, a, b, c); % 绘制曲线 plot(x, y); title('三参数Weibull分布的概率密度函数'); xlabel('失效时间'); ylabel('概率密度'); ``` 通过调整参数`a`、`b`和`c`的值,可以观察到曲线形状的变化。在实际应用中,可以根据具体问题选择合适的参数值进行分析和建模。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值