RDD的检查点(checkpoint)机制

     RDD的缓存能够在第一次计算完成后,将计算结果保存到内存、本地文件系统或者Tachyon中。通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度。但是,如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。

为了避免缓存丢失重新计算带来的开销,Spark又引入了检查点(checkpoint)机制。

缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存、本地文件系统和Tachyon)写入不同的介质。

而检查点不同,它是在计算完成后,重新建立一个Job来计算。

为了避免重复计算,推荐 先将RDD缓存,这样就能保证检查点的操作可以快速完成。

设置检查点:

//设置检查点目录 存储在HDFS上,并使用checkpoint设置检查点,该操作属于懒加载
sc.setCheckpointDir("hdfs://IP:9000/checkpoint/")
rdd.checkpoint()


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sinat_36710456

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值