实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
官方题解讲的很好了:
class Solution:
def nextPermutation(self, nums):
"""
:type nums: List[int]
:rtype: void Do not return anything, modify nums in-place instead.
"""
# 从右边往左边找到第一个i使得nums[i]<nums[i+1]
i = len(nums)-2
while i >= 0 and nums[i] >= nums[i+1]:
i -= 1
if i >= 0:
# 找到i+1到最后大于i的最小值的位置
j = len(nums) - 1
while j > i and nums[j] <= nums[i]:
j -= 1
nums[i], nums[j] = nums[j], nums[i] # 换位置
# 后面的肯定是排好序的,反转就行
nums[i+1:] = nums[i+1:][::-1]