MATLAB的使用(一):矩阵的操作命令

MATLAB的使用(一):矩阵的操作命令

一、矩阵的基本运算

  • 矩阵的输入方式:
	>> A=[1 -1 -1 0 3;2 -2 -1 2 4;3 -3 -1 4 5;1 -1 1 4 -1]; 
	或者
	>> A=[1,-1,-1,0,3;2,-2,-1,2,4;3,-3,-1,4,5;1,-1,1,4,-1]; 
  • 矩阵的基本运算:
矩阵的逆:inv(A)
矩阵的转置:A'
矩阵的秩:rank(A)
  • 对角阵:
>> I3=[1,1,1]
>> I3=diag(I3)	//三阶单位阵
  • 特征值和特征向量:
>> [X,B]=eig(A)   //特征向量X、特征值B
  • 行简化阶梯矩阵:
>> B=rref(A)
  • 最小多项式:
>>syms x
>> A = [3 -3 2;-1 5 -2;-1 3 0]
>> minpoly(A, x)   
ans = a^2 - 6*a + 8
  • Jordan标准型矩阵:
>> [P,J]=jordan(A)	//J为所求矩阵A的Jordan标准型,P为转换矩阵
>> Q=inv(P)			//Q=P^(-1),满足J=QAP
  • 基变换矩阵:
    X=(x1,x2,…,xn)—> Y=(y1,y2,…,yn)
>> X=[]
>> Y=[]		//(题目中给的是列向量!输入要转换一下)
>> Y=X*C	//(想想C需不需要转置)
>> C=X\Y
  • 坐标变换矩阵:
    在基(x1,x2,…,xn)下坐标:(ξ1,ξ2,ξ3,ξ4)^T;
    在基(y1,y2,…,yn)下坐标:(λ1,λ2,λ3,λ4)^T.
>> ξ=[]			//(列向量)
>> λ=[]			//(列向量)
>> ξ=C*λ		//(想想C需不需要转置)
>> λ=C^(-1)ξ	//C=λ\ ξ
  • 数据格式为分数:
format rat

二、求解线性方程组

• 行简化阶梯型矩阵:

>>A=[]
>>B=rref(A)	//B是A的行简化阶梯矩阵

• 求解齐次线性方程组AX=0:

>> A=[1 -1 -1 0 3;2 -2 -1 2 4;3 -3 -1 4 5;1 -1 1 4 -1]; 	//A=系数矩阵
>> X=null(A,'r')

• 求解非齐次线性方程组:

  1. A x ⃗ = b ⃗ A\vec x=\vec b Ax =b ,求 x ⃗ \vec x x
>> A = [2,3,1;4,2,3;7,1,-1];	//A=系数矩阵
>> B = [4;17;1];				//B=右边值矩阵[列向量!]
>> X = A\B
  1. x ⃗ A = b ⃗ \vec x A=\vec b x A=b ,求 x ⃗ \vec x x
>> A = [2,3,1;4,2,3;7,1,-1];	//A=系数矩阵
>> B = [4;17;1];				//B=右边值矩阵[列向量!]
>> X = B/A

三、求解矩阵范数

  • p-范数:
> A = []
> norm(A,1)            //1范数
> norm(A,2)            //2范数
> n = norm(A,inf)      //无穷范数
> norm(A, 'fro' )      //F范数

四、矩阵分解

  1. LU分解:
>> [B,C]=lu(A) //U为上三角阵,L为下三角阵
>>[L,U,P] = lu(X) //U为上三角阵,L为下三角阵,P为单位矩阵的行变换矩阵.

具体:
由A0求L0 ;
由L0求A1[=L0(-1)*A0],L0(-1)元素=负的L0元素;
由A1求L1;

L=L1L2(是单位下三角阵)
U=A_(n-1),可分解成U=D
U’,D为对角元素为特征值[U的对角线元素]。

  1. LDU分解:
    1、按高斯消元法一步步求得的L都是单位下三角阵。
    2、由上述A=LU得到的L=L1L2…和U
    3、将U分解成DU’
    o D为对角矩阵,对角元素为特征值[U的对角线元素],求法:[X,D]=eig(A);
    o U=D
    U’,则U’=D^(-1)*U [U的对角线元素变成1,其余不变]
    4、得到A=LDU’

  2. Crout分解:
    1、按‘LDU分解’得到A=LDU后
    2、L’=L*D
    3、A=L’U
    • 《Crout.m》

  3. Gholesky分解:
    1、按‘LDU分解’得到A=LDU后
    2、D’=根号D
    3、G=L根号D
    4、A=G
    G^T
    • CholeskyDecomposition[{{5,2,-4}, {2,1,-2},{-4,-2,5}}]

  4. QR分解:

[Q,R] = qr(A)

先正交化:Schmidt_orthogonalization.m
再[Q,R]=qr(A)
• QRDecomposition[{{1,2,2}, {2,1,2},{1,2,1}}]

  1. 满秩分解:
    1、行化简矩阵A:rref(A)
    2、【hermite矩阵方法】

  2. 奇异值分解:
    [U,S,V]=svd(A)

待续…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值