《线性代数及其应用》阅读笔记:第一章 线性代数中的线性方程组

《线性代数及其应用》阅读笔记(知识梳理):

第一章 线性代数中的线性方程组

1.1 线性方程组

涉及如下概念:

提纲
1、什么是线性方程?
2、什么是线性方程组?
3、线性方程组解的三种情况无解/唯一解/无穷多解
4、相容/不相容有解(1or无穷个)/无解
5、矩阵表示线性方程组系数矩阵/增广矩阵
  • 6、解线性方程组

解线性方程组的基本思路:将方程组用一个更容易解的等价方程组代替。

线性方程组的变换对应于增广矩阵的行变换。
—— 把线性方程组对应的增广矩阵中的系数矩阵整理成三角矩阵/对角矩阵,增广矩阵中最后一列即为线性方程组的解。

线性方程组线性方程组的解
{ a 11 x 1 + a 12 x 2 + a 13 x 3 = w 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = w 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = w 3 \begin{cases}a_{11}x1+a_{12}x2+a_{13}x3=w1\\a_{21}x1+a_{22}x2+a_{23}x3=w2\\a_{31}x1+a_{32}x2+a_{33}x3=w3\end{cases} a11x1+a12x2+a13x3=w1a21x1+a22x2+a23x3=w2a31x1+a32x2+a33x3=w3 { x 1 = z 1 x 2 = z 2 x 3 = z 3 \begin{cases}x1=z1\\x2=z2\\x3=z3\end{cases} x1=z1x2=z2x3=z3
增广矩阵表示原方程组化简成上三角矩阵从最后一行往上代入求得解
[ a 11 a 12 a 13 w 1 a 21 a 22 a 23 w 2 a 31 a 32 a 33 w 3 ] \left[ \begin{array}{cccc} a_{11} & a_{12} & a_{13}& w_1 \\ a_{21} & a_{22}& a_{23} & w_2 \\ a_{31}& a_{32}& a_{33} & w_3 \end{array} \right] a11a21a31a12a22a32a13a23a33w1w2w3 [ a 11 ′ a 12 ′ a 13 ′ z 1 ′ 0 a 22 ′ a 23 ′ z 2 ′ 0 0 a 33 ′ z 3 ′ ] \left[ \begin{array}{cccc} a_{11}'&a_{12}'&a_{13}' &z_1' \\0&a_{22}' &a_{23}'& z_2' \\ 0&0 &a_{33}' & z_3'\end{array} \right] a1100a12a220a13a23a33z1z2z3
增广矩阵表示原方程组化简成对角矩阵求得解
[ a 11 a 12 a 13 w 1 a 21 a 22 a 23 w 2 a 31 a 32 a 33 w 3 ] \left[ \begin{array}{cccc} a_{11} & a_{12} & a_{13}& w_1 \\ a_{21} & a_{22}& a_{23} & w_2 \\ a_{31}& a_{32}& a_{33} & w_3 \end{array} \right] a11a21a31a12a22a32a13a23a33w1w2w3 [ 1 0 0 z 1 0 1 0 z 2 0 0 1 z 3 ] \left[ \begin{array}{cccc} 1&0&0 &z_1 \\0&1 &0 & z_2 \\ 0&0 &1 & z_3\end{array} \right] 100010001z1z2z3

结合《矩阵论》所学,突然想到:
1、【任意一个n阶矩阵都和一个三角矩阵相似】
2、【n阶矩阵A与一个对角矩阵相似 ⇔ \Leftrightarrow 当矩阵A有n个线性无关的特征向量时】
3、【任意矩阵A在某组基下,可以与一个Jordan标准型矩阵(类三角矩阵)相似】

1.2 行化简与阶梯矩阵

提出的目的:行化简算法可以求解任意线性方程组。

行化简与阶梯矩阵
1 阶梯矩阵和简化阶梯矩阵的定义
2 行化简算法的步骤
3 应用行化简算法解线性方程

1、阶梯矩阵和简化阶梯矩阵的定义

任一矩阵阶梯形/行阶梯型矩阵简化阶梯形矩阵
定义定义
2. 各类型矩阵间关系任何非零矩阵可通过行简化(利用初等变换)成阶梯矩阵。不同方法可得到不同的阶梯形矩阵。一个矩阵只能化为唯一的简化阶梯矩阵。
3. 主元位置和主元列:是对原矩阵中的定义主元:
是对化简后的阶梯形/简化阶梯形中主元位置元素的定义
主元
4. 线性方程组的求解主用行化简算法对方程组的增广矩阵求解

2、行化简算法的步骤

行化简算法的步骤阶梯形/行阶梯型矩阵
向前步骤目的:化简得到阶梯形矩阵
1)从最左侧非零列开始:那么这就是一个主元列主元位置在最顶端
2)选主元元素:主元列选最大的非0元素,对换使其在主元位置
3)主元下方元素 → \to 0
4)忽略主元所在行和列,对子矩阵重复如上步骤
向后步骤
/矩阵算法
目的:得到简化阶梯矩阵
5)从最右侧主元开始,依次:主元上方元素 → \to 0,主元位置元素 → \to 1

3、应用行化简算法解线性方程

应用行化简算法解线性方程组:
1)线性方程组 → \to 一般的增广矩阵。
2)一般的增广矩阵 → \to 阶梯矩阵;确定方程组是否相容,不相容则无解,相容则进行下一步。
3)阶梯矩阵 → \to 简化阶梯矩阵。
4)写出由简化阶梯矩阵对应的方程组。
5)表示原方程所有变量 → \to 用任意自由变量表示基本变量;
6)得到通解。

1.3 向量方程

  • 提出的目的:
    用向量方程表示一组有序数,将线性方程组与向量方程联系起来。
1.3 向量方程
1 R^n向量的表示及几何意义
2 线性组合
3 什么是向量方程
5 向量方程的解法
6 生成/张成子空间
1.3 提纲向量方程
1 R n R^n Rn中的向量定义与表示仅含一列的矩阵称为列向量,简称向量 A = [ a 1 a 2 ⋮ a n ] A= \left[ \begin{matrix} a_1\\ a_2 \\ \vdots \\ a_n\end{matrix} \right] A=a1a2an
或为节省篇幅,表示成空间中坐标的形式: A = ( a 1 , a 2 , . . . , a n ) A= ( a_1,a_2 ,... ,a_n) A=(a1,a2,...,an)
2向量的几何意义与表示1)空间中的点表示向量:(1,1);
2)空间中的箭头表示向量。
3 线性组合 y ⃗ = c 1 v ⃗ 1 + c 2 v ⃗ 2 + . . . + c n v ⃗ n \vec y=c_1 \vec v_1+c_2 \vec v_2+...+c_n \vec v_n y =c1v 1+c2v 2+...+cnv n
每个基向量×相应权重之和
4 向量方程 x 1 a ⃗ 1 + x 2 a ⃗ 2 + . . . + x n a ⃗ n = b ⃗ x_1\vec a_1+x_2\vec a_2+...+x_n\vec a_n=\vec b x1a 1+x2a 2+...+xna n=b
其增广矩阵为: [ a ⃗ 1 a ⃗ 2 . . . a ⃗ n b ⃗ ] [\vec a_1 \vec a_2 ... \vec a_n \vec b] [a 1a 2...a nb ]
5 向量方程的解法对增广矩阵进行行阶梯化简。
6 生成/张成子空间 v ⃗ 1 、 v ⃗ 2 、 . . . 、 v ⃗ n \vec v_1、\vec v_2、...、\vec v_n v 1v 2...v n所生成的 R n R^n Rn的子集

1.4 矩阵方程

  • 提出的目的:
    线性代数中的一个基本思想是把响亮的线性组合看做是矩阵与向量的乘积。也即满足 A x ⃗ = b ⃗ A\vec x=\vec b Ax =b 的形式,其中的A就是系数矩阵,从而引出矩阵方程的概念。
1.4 矩阵方程
1 矩阵方程的定义
2 矩阵方程/向量方程/线性方程组的关系
3 矩阵方程的解法
1.4 提纲矩阵方程
1 矩阵方程的定义形如 A x ⃗ = b ⃗ A\vec x=\vec b Ax =b 的方程叫矩阵方程,
其中, A x ⃗ = [ a ⃗ 1 a ⃗ 2 . . . a ⃗ n ] [ x 1 x 2 ⋮ x n ] = x 1 a ⃗ 1 + x 2 a ⃗ 2 + . . . + x n a ⃗ n A\vec x=[ \vec a_1\vec a_2...\vec a_n] \left[ \begin{matrix} x_1\\ x_2 \\ \vdots \\ x_n\end{matrix} \right]=x_1\vec a_1+x_2\vec a_2+...+x_n\vec a_n Ax =[a 1a 2...a n]x1x2xn=x1a 1+x2a 2+...+xna n
2 与向量方程/线性方程组的关系矩阵方程: A x ⃗ = b ⃗ A\vec x=\vec b Ax =b
向量方程: x 1 a ⃗ 1 + x 2 a ⃗ 2 + . . . + x n a ⃗ n = b ⃗ x_1\vec a_1+x_2\vec a_2+...+x_n\vec a_n=\vec b x1a 1+x2a 2+...+xna n=b 与增广矩阵为 [ a ⃗ 1 a ⃗ 2 . . . a ⃗ n b ⃗ ] [\vec a_1 \vec a_2 ... \vec a_n \vec b] [a 1a 2...a nb ]的线性方程组解集相同
3 矩阵方程的解法矩阵×向量:
A x ⃗ A\vec x Ax 中第i个元素是A中第i行元素与 x ⃗ \vec x x 乘积之和。
A x ⃗ = [ a 11 a 12 a 13 ⋮ ⋮ ⋮ ] [ x 1 x 2 x 3 ] = [ a 11 x 1 a 12 x 2 a 13 x 1 ⋮ ⋮ ⋮ ] A\vec x= \left[ \begin{matrix} a_{11}&a_{12}&a_{13}\\ \vdots&\vdots&\vdots \end{matrix} \right] \left[\begin{matrix} x_1\\ x_2 \\ x_3\end{matrix} \right]=\left[ \begin{matrix} a_{11}x_1&a_{12}x_2&a_{13}x_1\\ \vdots&\vdots&\vdots \end{matrix} \right] Ax =[a11a12a13]x1x2x3=[a11x1a12x2a13x1]

总结:

  • 线性方程组的三种不同观点:
    线性方程组、向量方程、矩阵方程。

  • 线性方程组的通用解法:
    行化简算法化简增广矩阵。[是线性方程组—>矩阵的转变]

1.5 线性方程组的解集

1.5.1 齐次线性方程组

1.5.2 非齐次线性方程组

参见:线性方程组的解集

1.5.3 参数向量形式

把(相容方程组的)解集表示成参数向量形式
1. 增广矩阵化简成行阶梯矩阵
2.将每个基本变量用自由变量表示
3. 将一般解 x ⃗ \vec x x 表示成向量,若有自由向量,其元素依赖于自由向量。
4. 将 x ⃗ \vec x x 分解成向量的线性组合,用自由变量做参数。

1.7 线性无关

1.7.1 向量的线性无关与线性相关

向量组 x ⃗ = \vec x= x = { x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n \vec x_1,\vec x_2,...,\vec x_n x 1,x 2,...,x n }
向量方程 c 1 x ⃗ 1 + c 2 x ⃗ 2 + . . . + c n x ⃗ n = 0 ⃗ c_1\vec x_1+c_2\vec x_2+...+c_n\vec x_n=\vec 0 c1x 1+c2x 2+...+cnx n=0
线性无关仅有平凡解: x ⃗ = 0 ⃗ \vec x=\vec 0 x =0
线性相关 c i c_i ci不全为0

1.7.2 矩阵各列的线性无关与线性相关

矩阵 A = A= A=[ a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n \vec a_1,\vec a_2,...,\vec a_n a 1,a 2,...,a n]
矩阵方程 A x ⃗ = 0 ⃗ A\vec x=\vec 0 Ax =0
c 1 a ⃗ 1 + c 2 a ⃗ 2 + . . . + c n a ⃗ n = 0 ⃗ c_1\vec a_1+c_2\vec a_2+...+c_n\vec a_n=\vec 0 c1a 1+c2a 2+...+cna n=0
矩阵各列线性无关 A x ⃗ = 0 ⃗ A\vec x=\vec 0 Ax =0 仅有平凡解: x ⃗ = 0 ⃗ \vec x=\vec 0 x =0
矩阵各列线性相关 c i c_i ci不全为0

1.7.3 判断线性无关与线性相关

  • 一个或两个向量的集合:
    观察法:一个向量是否是另一个的倍数。

  • 两个或更多向量的集合:
    向量组中存在某一个向量是其他向量的线性组合。
    但去验证某特定向量是其他向量的线性组合是不对的。

  • 判断线性相关:
    方程组数目小于变量数目。
    向量组中向量数目多于每个向量元素个数。
    [向量组表现为:长>宽的矩形].

1.8 线性变换介绍

对于式子“ A x ⃗ = b ⃗ A\vec x=\vec b Ax =b ”,可以理解为:把矩阵A看做一个对象,它通过乘法运算“作用”到 x ⃗ \vec x x 上,从而产生新的向量 b ⃗ \vec b b 。这就是一个线性变换的过程。

  • 对线性变换的理解:
    x ⃗ → A x ⃗ \vec x \to A\vec x x Ax 对应从一个向量集合 R n R^n Rn到另一个向量集合 R m R^m Rm的“函数”变换过程。
函数 A x ⃗ = b ⃗ A\vec x=\vec b Ax =b 理解
T ( x ⃗ ) T(\vec x) T(x )映射规则为: T T T
T的定义域 R n R^n Rn
T的余定义域 R m R^m Rm上的全体向量;
x ⃗ \vec x x R m R^m Rm中的向量 T ( x ⃗ ) T(\vec x) T(x )
T的值域:所有像 T ( x ⃗ ) T(\vec x) T(x )的集合。

对于映射规则“ T T T”常用 A x ⃗ A\vec x Ax 计算得到,其中 A A A为m*n阶矩阵。
对应于T的定义域维度为A的列数n → R n \to R^n Rn
对应于T的余定义域维度为A的行数m → R m \to R^m Rm

  • 线性变换的性质:

T ( c u ⃗ + d v ⃗ ) = c ∗ T ( u ⃗ ) + d ∗ T ( v ⃗ ) T(c \vec u+d \vec v)=c*T(\vec u)+d*T(\vec v) T(cu +dv )=cT(u )+dT(v )

1.9 线性变换的矩阵

  • 提出的目的:
    线性变换T是从几何中提出来的,用语言来叙述,但这往往很抽象,不具化。我们希望可以用有关T(x)的公式来形象化表达。
    R n → R m R^n \to R^m RnRm的每个线性变换实际上都是一个矩阵变换: x ⃗ → A x ⃗ \vec x \to A\vec x x Ax

设T为 R n → R m R^n \to R^m RnRm的线性变换,则存在唯一的矩阵A,使得对 R n R^n Rn中的所有 x ⃗ \vec x x ,满足 T ( x ⃗ ) = A x ⃗ T(\vec x)=A \vec x T(x )=Ax
对向量 x ⃗ = x 1 e ⃗ 1 + x 2 e ⃗ 2 + . . + x n e ⃗ n \vec x=x_1\vec e_1+x_2\vec e_2+..+x_n\vec e_n x =x1e 1+x2e 2+..+xne n
T ( x ⃗ ) = T ( x 1 e ⃗ 1 + x 2 e ⃗ 2 + . . + x n e ⃗ n ) = x 1 T ( e ⃗ 1 ) + x 2 T ( e ⃗ 2 ) + . . . + x n T ( e ⃗ n ) T(\vec x)=T(x_1\vec e_1+x_2\vec e_2+..+x_n\vec e_n)=x_1T(\vec e_1)+x_2T(\vec e_2)+...+x_nT(\vec e_n) T(x )=T(x1e 1+x2e 2+..+xne n)=x1T(e 1)+x2T(e 2)+...+xnT(e n)
= [ T ( e ⃗ 1 ) T ( e ⃗ 2 ) . . . T ( e ⃗ n ) ] [ x 1 x 2 . . . x n ] = A x ⃗ =[T(\vec e_1) T(\vec e_2) ... T(\vec e_n)]\left[ \begin{matrix} x_1\\ x_2 \\ ... \\ x_n\end{matrix} \right]=A \vec x =[T(e 1)T(e 2)...T(e n)]x1x2...xn=Ax

A称作线性变换T的标准矩阵

第一章毕。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值