《矩阵论》学习笔记(五):第五章 特征值的估计及对称矩阵的极性

第五章 特征值的估计及对称矩阵的极性


注:
1.本章讨论的是" 方阵“的特征值。
2.复数域上的方阵 A n ∗ n A_{n*n} Ann特征值个数=阶数n。

一、特征值的估计

  • 原因/背景:
    1)大矩阵特征值的计算困难;
    2)大量应用中,不需要精确计算特征值,只需估测出其范围即可。
特征值的估计
1. 任一特征值模的上界估计
2. 所有特征值的模之积的上下界估计
3. 所有特征值的模的平方和的上界估计
特征值的实部
特征值的虚部

1.1. 特征值的界

  1. 特征值的模的上下界估计:
    是对每个特征值做估计.
- 特征值模的 虚部的 上界估计:
1) [ I m ( λ ) ] ≤ M n ( n − 1 ) 2 [Im(\lambda)]≤M\sqrt{\frac{n(n-1)}{2}} [Im(λ)]M2n(n1)
其中, M = m a x 1 2 [ a r s − a s r ] M=max\frac{1}{2}[a_{rs}-a_{sr}] M=max21[arsasr],考察了矩阵的对称程度。
2) [ I m ( λ ) ] ≤ 1 2 [ [ A − A H ] ] m 无 穷 [Im(\lambda)]≤\frac{1}{2}[[A-A^H]]_{m无穷} [Im(λ)]21[[AAH]]m
- [在估计特征值虚部的上界时,(1)比(2)结果更精准。]
- 特征值模的 实部的 上界估计:
1) [ R e ( λ ) ] ≤ 1 2 [ [ A + A H ] ] m 无 穷 [Re(\lambda)]≤\frac{1}{2}[[A+A^H]]_{m无穷} [Re(λ)]21[[A+AH]]m
2) [ λ ] ≤ ρ ( A ) ≤ [ [ A ] ] m 无 穷 [\lambda]≤\rho(A)≤[[A]]_{m无穷} [λ]ρ(A)[[A]]m
- 以上 得到以下推论:
1. 实对称矩阵的特征值都是实数。
2. Hermite矩阵的特征值都是实数。 A = A H A=A^H A=AH
3. 反Hermite矩阵的特征值都是零或虚数。 A = − A H A=-A^H A=AH
  1. 特征值的模之积的上下界估计:
    是对全体特征值做估计.
矩阵A满足的特点特征值的模的积的上下界估计
1)按行严格对角占优 0 < ∏ r = 1 n m r ≤ [ d e t A ] = ∏ r = 1 n [ λ r ( A ) ] ≤ ∏ r = 1 n M r 0<\prod_{r=1}^n m_r≤[detA]=\prod_{r=1}^n[\lambda_r(A)]≤\prod_{r=1}^n M_r 0<r=1nmr[detA]=r=1n[λr(A)]r=1nMr.
等号成立: a r s = 0 a_{rs}=0 ars=0(s>r).
2)一般方阵 [ d e t A ] = ∏ r = 1 n [ λ r ( A ) ] ≤ [ ∏ s = 1 n ( ∑ r = 1 n [ a r s ] 2 ) ] 1 / 2 [detA]=\prod_{r=1}^n[\lambda_r(A)]≤[\prod_{s=1}^n(\sum_{r=1}^n [a_{rs}]^2)]^{1/2} [detA]=r=1n[λr(A)][s=1n(r=1n[ars]2)]1/2.
等号成立:某列 a s 0 = 0 a_{s_0}=0 as0=0或 列向量两两相交 ( a r , a s ) = 0 (a_r,a_s)=0 (ar,as)=0.
也即,特征值的模的积≤矩阵(各列元素的2-范数之和)的乘积。

其中,

- 涉及的几个小概念:
1. R r ( A ) R_r(A) Rr(A):第r行,除对角元素 a r r a_{rr} arr外其他所有元素的模之和
2. M r ( A ) M_r(A) Mr(A):第r行,对角元素 a r r a_{rr} arr与其右侧所有元素的模之和
3. m r ( A ) m_r(A) mr(A):第r行,对角元素 a r r a_{rr} arr与其右侧所有元素的模之差
4. 按行严格对角占优:第r行,对角元素 a r r a_{rr} arr的模 > R r ( A ) R_r(A) Rr(A)
5. 按行弱对角占优:第r行,对角元素 a r r a_{rr} arr的模 ≥ R r ( A ) R_r(A) Rr(A),且存在 r 0 ∈ [ 1 , n ] r_0∈[1,n] r0[1,n],使得 a r 0 r 0 a_{r_0r_0} ar0r0的模> R r 0 ( A ) R_{r_0}(A) Rr0(A)
  1. 特征值的模的平方和的上界估计:
    是对全体特征值做估计.
特征值的模的平方和的上界估计:
∑ r = 1 n [ λ r ] ≤ ∑ r , s = 1 n [ a r s ] 2 = [ [ A ] ] F 2 \sum_{r=1}^n [\lambda_r]≤\sum_{r,s=1}^n [a_{rs}]^2=[[A]]^2_F r=1n[λr]r,s=1n[ars]2=[[A]]F2
等号成立条件:A为正规矩阵, A H A = A A H A^HA=AA^H AHA=AAH.
也即,A的特征值的模的平方和≤A的所有元素的模的平方和。

1.2. 盖尔圆 Gerschgorin

  • 原因/背景:
    几何的角度估计特征值:
    Gerschgorin提出用复平面的一组圆盘覆盖矩阵的全体特征值。

对矩阵A的任一特征值 λ \lambda λ,存在i,使得对矩阵A的第i行有: ∣ z − a r r ∣ ≤ R i ( A ) |z-a_{rr}|≤R_i(A) zarrRi(A)
也即,每个 λ i \lambda_i λi一定在某个以( a r r , 0 a_{rr},0 arr,0)为圆心,以 R i R_i Ri为半径的圆 G i G_i Gi内。

-盖尔圆与特征值的关系
1. 方阵A的所有特征值都在它的n个盖尔圆的并集内。
2. 盖尔圆并集组成的每个连通部分,若是由k个盖尔圆组成的,则此连通部分有k个特征值。
  • 特征值的隔离
    1- 原因:
    连通的盖尔圆使得无法判断特征值到底在哪一个内,希望能够每个圆内有且只有一个特征值。
    2-做法:
    调整矩阵A的盖尔圆半径,使各个 G i G_i Gi孤立、不相交。
    对矩阵做相似变换,需要找到合适的对角矩阵D[D= d i a g ( d 1 , d 2 , . . . d n ) diag(d_1,d_2,...d_n) diag(d1,d2,...dn)],使得:
    r i = ∑ j = 1 , j ≠ i n [ a i j ] d i d j r_i=\sum_{j=1,j≠i}^n [a_{ij}]\frac{d_i}{d_j} ri=j=1,j=in[aij]djdi
    其中,B=DAD − 1 = ( d i d j a i j ) n ∗ n ^{-1}=(\frac{d_i}{d_j}a_{ij})_{n*n} 1=(djdiaij)nn.
    d e t ( A ) = d e t ( B ) = d e t ( B H ) det(A)=det(B)=det(B^H) det(A)=det(B)=det(BH),A和B有相同的特征值。

1.3. Ostrowski

  • 原因/背景:
    几何的角度估计特征值:
    Ostrowski提出用复平面的一组卵形覆盖矩阵的全体特征值。

Ostrowski 1:

对矩阵A的任一特征值 λ \lambda λ,存在i,使得对矩阵A的第i行有:
∣ z − a r r ∣ ≤ [ R i ( A ) ] α [ R i ( A T ) ] 1 − α |z-a_{rr}|≤[R_i(A)]^{\alpha}[R_i(A^T)]^{1-\alpha} zarr[Ri(A)]α[Ri(AT)]1α
其中, 0 ≤ α ≤ 1 0≤\alpha≤1 0α1.

由于 τ α σ 1 − α ≤ α τ + ( 1 − α ) σ \tau^{\alpha}\sigma^{1-\alpha}≤{\alpha}\tau+(1-\alpha)\sigma τασ1αατ+(1α)σ

几个推论
1. [ z − a r r ] ≤ α R i ( A ) + ( 1 − α ) R i ( A T ) [z-a_{rr}]≤{\alpha}R_i(A)+(1-\alpha)R_i(A^T) [zarr]αRi(A)+(1α)Ri(AT)
2. …

Ostrowski 2:

对矩阵A的任一特征值 λ \lambda λ,存在i和j,使得对矩阵A的第i、j两行有:
Ω i j ( A ) = \Omega_{ij}(A)= Ωij(A)={ z ∣ z ∈ C , ∣ z − a i i ∣ ∣ z − a j j ∣ ≤ R i ( A ) R j ( A ) z|z∈C,|z-a_{ii}||z-a_{jj}|≤R_i(A)R_j(A) zzC,zaiizajjRi(A)Rj(A)},
其中, i ≠ j i≠j i=j.

  • 推论:
    ∣ a i i ∣ ∣ a j j ∣ > R i ( A ) R j ( A ) |a_{ii}||a_{jj}|>R_i(A)R_j(A) aiiajj>Ri(A)Rj(A),则detA≠0.
    其中, i ≠ j i≠j i=j.

二、广义特征值问题

  • 原因/背景:
    在振动理论中,常碰到广义特征值问题的求解问题。

  • 广义特征值:

A x ⃗ = λ B x ⃗ A\vec x=\lambda B \vec x Ax =λBx ,其中A为n阶实对称矩阵,B为n阶实对称正定矩阵。
λ \lambda λ称作矩阵A相对于B的特征值,
非零解 x ⃗ \vec x x 称作 λ \lambda λ的特征向量,( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n \vec x_1,\vec x_2,...,\vec x_n x 1,x 2,...,x n)构成一个完备的特征向量系(正交)。

  • 广义特征值的等价形式:
  1. B − 1 A x ⃗ = λ x ⃗ B^{-1}A\vec x=\lambda \vec x B1Ax =λx ,其中 B − 1 A B^{-1}A B1A不是对称矩阵。
  2. S y ⃗ = λ y ⃗ S\vec y=\lambda \vec y Sy =λy ,其中, S = G − 1 A ( G − 1 ) T S=G^{-1}A(G^{-1})^T S=G1A(G1)T为对称矩阵。由于B是实对称正定矩阵,可以进行Cholesky分解成 B = G G T 9 B=GG^{^T9} B=GGT9

三、对称矩阵特征值的极性

3.1. 实对称矩阵的Rayleigh商的极性

  • 1. 实对称矩阵的Rayleigh商

R ( x ⃗ ) = x ⃗ T A x ⃗ x ⃗ T x ⃗ , ( x ≠ 0 ) R( \vec x)=\frac{\vec x^TA\vec x}{\vec x^T\vec x},(x≠0) R(x )=x Tx x TAx ,(x=0)

Rayleigh商的性质
1. R(x)是连续函数
2. R(x)是x的零次齐次函数
3. R(kx)=R(x)=c
4. R(x)的最大/小值能够在单位圆上取到.
  • 2 实对称矩阵的极性

(1).若已知:
矩阵A的特征值由小到大排列为: λ 1 < λ 2 < . . . < λ n \lambda_1<\lambda_2<...<\lambda_n λ1<λ2<...<λn,对应的标准正交特征向量系为:L= { p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn}。

  • 得到实对称矩阵的极性:

m i n x ≠ 0 R ( x ) = λ 1 , m a x x ≠ 0 R ( x ) = λ n min_{x≠0}R(x)=\lambda_1,max_{x≠0}R(x)=\lambda_n minx=0R(x)=λ1maxx=0R(x)=λn
且在单位球面 ∣ ∣ x ∣ ∣ 2 = 1 ||x||_2=1 x2=1上, p 1 、 p n p_1、p_n p1pn分别是R(x)的一个极小值点和极大值点:
R ( p 1 ) = λ 1 , R ( p n ) = λ n . R(p_1)=\lambda_1,R(p_n)=\lambda_n. R(p1)=λ1R(pn)=λn.
即,函数R(x)的最小值为最小特征值,最大值为最大特征值。
在单位圆上,R(x)在x=p1和pn处取得极值。

  • 推论:
    L的子空间 L 0 = L_0= L0={ p r , p r + 1 , . . . , p k p_r,p_{r+1},...,p_k pr,pr+1,...,pk}的极性:
    m i n x ≠ 0 R ( x ) = λ r , m a x x ≠ 0 R ( x ) = λ k min_{x≠0}R(x)=\lambda_r,max_{x≠0}R(x)=\lambda_k minx=0R(x)=λrmaxx=0R(x)=λk

(2).若特征向量 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn未知时,求A的第k大的特征值为:
λ k = m i n v k m a x \lambda_k=min_{v_k}max λk=minvkmax{ x T A x ∣ x ∈ V k , ∣ ∣ x ∣ ∣ 2 = 1 x^TAx|x∈V_k,||x||_2=1 xTAxxVkx2=1}

3.1.3 实对称矩阵的扰动

3.2. 广义特征值的极小极大原理

  1. 广义Rayleigh商

R ( x ⃗ ) = x ⃗ T A x ⃗ x ⃗ T B x ⃗ , ( x ≠ 0 ) R( \vec x)=\frac{\vec x^TA\vec x}{\vec x^TB\vec x},(x≠0) R(x )=x TBx x TAx ,(x=0)

  1. 广义特征值的极性
  • 驻点
    x 0 x_0 x0是函数R(x)的驻点的充要条件: x 0 x_0 x0 A x = λ B x Ax=\lambda Bx Ax=λBx的属于特征值 λ \lambda λ的特征向量.

  • 广义特征值的极性
    特征值的极小极大原理:— λ k = m i n v k m a x ( 0 ≠ x ∈ V k ) R ( x ) \lambda_k=min_{v_k}max_{(0≠x∈V_k)}R(x) λk=minvkmax(0=xVk)R(x)
    特征值的极大极小原理:— λ ( n − k + 1 ) = m a x v k m i n ( 0 ≠ x ∈ V k ) R ( x ) \lambda_(n-k+1)=max_{v_k}min_{(0≠x∈V_k)}R(x) λ(nk+1)=maxvkmin(0=xVk)R(x)

  • 实对称矩阵特征值的极性
    λ k = m i n v k m a x ( 0 ≠ x ∈ V k ) R ( x ) \lambda_k=min_{v_k}max_{(0≠x∈V_k)}R(x) λk=minvkmax(0=xVk)R(x)
    λ ( n − k + 1 ) = m a x v k m i n ( 0 ≠ x ∈ V k ) R ( x ) \lambda_(n-k+1)=max_{v_k}min_{(0≠x∈V_k)}R(x) λ(nk+1)=maxvkmin(0=xVk)R(x)

四、矩阵的直积与应用

4.1. 直积的概念

矩阵的直积:A⊗B.

直积的性质
1. 交换律A⊗B≠B⊗A
2. 分配律(A1+A2)⊗B=A1⊗B+A2⊗B
3. 结合律(A⊗B)⊗C=A⊗(B⊗C)
4. 数乘k(A⊗B)=(kA)⊗B=A⊗(kB)
5. 直积的乘积等于乘积的直积(A1⊗B1)(A2⊗B2)=(A1A2)⊗(B1B2)
6. 可逆性 A m ∗ m , B n ∗ n A_{m*m},B_{n*n} Amm,Bnn都是可逆矩阵,则(A⊗B) − 1 ^{-1} 1=A − 1 ^{-1} 1⊗B − 1 ^{-1} 1
7. 三角矩阵 A m ∗ m , B n ∗ n A_{m*m},B_{n*n} Amm,Bnn都是三角矩阵,则(A⊗B)也是三角矩阵
8. 共轭转置(A⊗B) H ^H H=A H ^H H⊗B H ^H H
9. 正交酉矩阵 A m ∗ m , B n ∗ n A_{m*m},B_{n*n} Amm,Bnn都是正交酉矩阵,则(A⊗B)也是正交酉矩阵
10. 秩rank(A⊗B)=(rankA)*(rankB)
11. 相似 A ∈ C m ∗ m , B ∈ C n ∗ n A∈C^{m*m},B∈C^{n*n} ACmm,BCnn,则(A⊗B)~(B⊗A)
  • 与二元多项式结合:
    f ( x , y ) = ∑ i = 0 l 1 ∑ j = 0 l 2 c i j x i y j f(x,y)=\sum_{i=0}^{l_1}\sum_{j=0}^{l_2}c_{ij}x^iy^j f(x,y)=i=0l1j=0l2cijxiyj,以及矩阵 A m ∗ m , B n ∗ n A_{m*m},B_{n*n} Amm,Bnn定义m*n阶矩阵f(A,B):
    f ( A , B ) = ∑ i = 0 l 1 ∑ j = 0 l 2 c i j A i ⊗ B j f(A,B)=\sum_{i=0}^{l_1}\sum_{j=0}^{l_2}c_{ij}A^i⊗B^j f(A,B)=i=0l1j=0l2cijAiBj.
f(A,B)的性质
1. 特征值1> A的特征值{ λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn},B的特征值{ μ 1 , μ 2 , . . . μ n \mu_1,\mu_2,...\mu_n μ1,μ2,...μn},则矩阵 f ( A , B ) f(A,B) f(A,B)的全体特征值为 f ( λ i , μ j ) f(\lambda_i,\mu_j) f(λi,μj);
2> 矩阵(A⊗B)的全体特征值为 λ i μ j \lambda_i\mu_j λiμj.
2.行列式det A ∈ C m ∗ m , B ∈ C n ∗ n , d e t ( A ⊗ B ) = d e t A n ∗ d e t B m A∈C^{m*m},B∈C^{n*n},det(A⊗B)=detA^n*detB^m ACmm,BCnn,det(AB)=detAndetBm
3.迹tr A ∈ C m ∗ m , B ∈ C n ∗ n , t r ( A ⊗ B ) = ( t r A ) ∗ ( t r B ) A∈C^{m*m},B∈C^{n*n},tr(A⊗B)=(trA)*(trB) ACmm,BCnn,tr(AB)=(trA)(trB)

4.2. 线性矩阵方程的可解性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值