凸集
凸集的几个基本性质http://wenku.baidu.com/view/519d525177232f60ddcca1f0
凸函数
- 注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些国内的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和数学教材是反的。举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及,有
-
。
也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。
如果对于任意的有
-
f(tx
+ (1 − t)y) < tf(x) + (1 − t)f(y),函数f是严格凸的。
若对于任意的x,y,z,其中,都有
,则称函数f是几乎凸的。
性质
定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。
一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。
一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y) ≥
一元二阶可微的函数在区间上是凸的,当且仅当它的二阶导数是非负的;这可以用来判断某个函数是不是凸函数。如果它的二阶导数是正数,那么函数就是严格凸的,但反过来不成立。例如,f(x) =
更一般地,多元二次可微的连续函数在凸集上是凸的,当且仅当它的黑塞矩阵在凸集的内部是正定的。
对于凸函数f,水平子集{x
延森不等式对于每一个凸函数f都成立。如果X是一个随机变量,在f的定义域内取值,那么(在这里,E表示数学期望。)
凸函数的初等运算
- 如果f和g是凸函数,那么m(x) = max{f(x),g(x)}和h(x) =
f(x) + g(x)也是凸函数。 - 如果f和g是凸函数,且g递增,那么h(x) =
g(f(x))是凸函数。 - 凸性在仿射映射下不变:也就是说,如果f(x)是凸函数(
),那么g(y) =
f(Ay +b)也是凸函数,其中 - 如果f(x,y)在(x,y)内是凸函数,且C是一个凸的非空集,那么
在x内是凸函数,只要对于某个x,有
。
例子
- 函数f(x) =
x2处处有 ,因此f是一个(严格的)凸函数。
- 绝对值函数f(x) = |
x | 是凸函数,虽然它在点x = 0没有导数。 - 当1 ≤
p时,函数f(x) = | x | p是凸函数。 - 定义域为[0,1]的函数f,定义为f(0)=f(1)=1,当0<<i>x<1时f(x)=0,是凸函数;它在开区间(0,1)内连续,但在0和1不连续。
- 函数x3的二阶导数为6x,因此它在x
≥ 0的集合上是凸函数,在x ≤ 0的集合上是凹函数。 - 每一个在
内取值的线性变换都是凸函数,但不是严格凸函数,因为如果f是线性函数,那么f(a
+ b) = f(a) + f(b)。如果我们把“凸”换为“凹”,那么该命题也成立。 - 每一个在
内取值的仿射变换,也就是说,每一个形如f(x) =
aTx + b的函数,既是凸函数又是凹函数。 - 每一个范数都是凸函数,这是由于三角不等式。
- 如果f是凸函数,那么当t
> 0时,g(x,t) = tf(x / t)是凸函数。 - 单调递增但非凸的函数包括
和g(x) = log(x)。
- 非单调递增的凸函数包括h(x) =
x2和k(x) = − x。 - 函数f(x) = 1/x2,f(0)=+∞,在区间(0,+∞)内是凸函数,在区间(-∞,0)内也是凸函数,但是在区间(-∞,+∞)内不是凸函数,这是由于x
= 0处的奇点。
参考文献
- Moon, Todd.
Tutorial: Convexity and Jensen's inequality [2008-09-04]. - Rockafellar, R. T.. Convex analysis. Princeton: Princeton University Press. 1970.
- Luenberger, David. Linear and Nonlinear Programming. Addison-Wesley. 1984.
- Luenberger, David. Optimization by Vector Space Methods. Wiley & Sons. 1969.
- Bertsekas, Dimitri. Convex Analysis and Optimization. Athena Scientific. 2003.
- Thomson, Brian. Symmetric Properties of Real Functions. CRC Press. 1994.
- Hiriart-Urruty, Jean-Baptiste, and Lemaréchal, Claude. (2004). Fundamentals of Convex analysis. Berlin: Springer.
- Krasnosel'skii M.A., Rutickii Ya.B.. Convex Functions and Orlicz Spaces. Groningen: P.Noordhoff Ltd. 1961.
- Borwein, Jonathan, and Lewis, Adrian. (2000). Convex Analysis and Nonlinear Optimization. Springer.