利用tensorflow实现经典神经网络(一)-resnet

本文将从三个方面来讲解resnet的实现,分别是resnet的由来,resnet的原理以及resnet的tensorflow实现。

1 resnet的提出

ResNet最初的灵感出自这个问题:深度学习网络的深度对最后的分类和识别的效果有着很大的影响,所以正常想法就是能把网络设计的越深越好,但是事实上却不是这样,常规的网络的堆叠(plain network)在网络很深的时候,效果却越来越差了,即准确率会先上升然后达到饱和,在持续增加深度则会导致准确率下降。


2 resnet的原理

使用全等映射直接将前一层输出传到后面的思想,即增加一个identity mapping(恒等映射),就是ResNet的灵感来源。假定某段神经网络的输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始结果,那么此时所需要学的函数H(x)转换成F(x)+x。上图为ResNet的残差学习单元,相当于将学习目标改变了,这一想法也是源于图像处理中的残差向量编码,通过一个reformulation,将一个问题分解成多个尺度直接的残差问题,能够很好的起到优化训练的效果。


3 resnet的tensorflow实现

 3.1 残差学习单元

除了两层的残差学习单元,还有残差的残差学习单元, 即三层的残差学习单元


这相当于对于相同数量的层又减少了参数量,因此可以拓展成更深的模型

ResNet有50、101、152层等的神经网络,其中基础结构很相似,都是前面提到的两层和三层残差单元的堆叠。这些不仅没有出现退化问题,错误率也大大降低,而且消除了层数不断加深导致训练集误差增大的现象,同时计算复杂度也保持在很低的程度


接下来我们就利用tensorflow的辅助库来完成resnet的设计

实现的流程主要如下所示:

0 导入相关模块

1 定义Block类

2 定义相关函数

定义降采样方法、卷积操作方法、堆叠block方法、resnet的参数方法、瓶颈函数(bottleneck

3 定义resnet_v2的实现方法

4 定义不同深度的resnet_v2_50和resnet_v2_101的实现方法#导入相关模块

import tensorflow as tf
import tensorflow.contrib.slim as slim
import collections
from datetime import datetime
import time
import math
from tensorflow.contrib.layers.python.layers import utils

#定义Block类
class Block(collections.namedtuple('Block',['scope','unit_fn','args'])):
    """
    定义一个Block类,有三个属性:
    'scope': 命名空间
    'unit_fn':单元函数
    'args':参数
    """
#定义相关函数
#定义降采样方法
def subsample(inputs,factor,scope=None):
    """

    :param inputs: 输入数据
    :param factor: 采样因子,stride步长
    :param scope: 作用域
    :return:
    """
    if factor==1:
        return inputs
    else:
        return slim.max_pool2d(inputs,kernel_size=[1,1],stride=factor,scope=scope)

#定义卷积操作方法
def conv2d_same(inputs,num_outputs,kernel_size,stride,scope=None):
    if stride==1:
        return slim.conv2d(inputs,num_outputs,kernel_size,stride=1,padding='SAME',scope=scope)
    else:
        #修整Inputs,对inputs进行补零操作
        padding_total=kernel_size-1
        padding_beg=padding_total//2
        padding_end=padding_total-padding_beg
        inputs=tf.pad(inputs,[[0,0],[padding_beg,padding_end],[padding_beg,padding_end],[0,0]])
        return slim.conv2d(inputs,num_outputs,kernel_size,stride=stride,padding='VALID',scope=scope)

#定义堆叠block方法
@slim.add_arg_scope
def stack_block_dense(net,blocks,outputs_collections=None):
    """
    net:input
    blocks:Block的class列表
    outputs_collections:收集各个end_points的collections

    """
    for block in blocks:
        #双层循环,遍历blocks,遍历res unit堆叠
        with tf.variable_scope(block.scope,'block',[net]) as sc:
            #用两个tf.variable_scope将残差学习单元命名为block1/unit_1的形式
            for i ,unit in enumerate(block.args):
                with tf.variable_scope('unit_%d'%(i+1),values=[net]):
                    #利用第二层循环拿到block中的args,将其展开为depth,depth_bottleneck,strdie
                    unit_depth,unit_depth_bottleneck,unit_stride=unit
                    #使用残差学习单元的生成函数unit_fn,顺序的创建并连接所有的残差学习单元
                    net=block.unit_fn(net,
                                      depth=unit_depth,
                                      depth_bottleneck=unit_depth_bottleneck,
                                      stride=unit_stride)
                    #使用utils.collect_named_outputs将输出net添加到collection中
                    net=utils.collect_named_outputs(outputs_collections,sc.name,net)
    return net

#定义resnet参数
def resnet_arg_scope(is_training=True,
                     weight_decay=0.0001,
                     batch_norm_decay=0.97,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True):
    #创建resnet通用的arg_scope
    batch_norm_params={
        'is_training':is_training,
        'decay':batch_norm_decay,
        'epsilon':batch_norm_epsilon,
        'scale':batch_norm_scale,
        'updates_collections':tf.GraphKeys.UPDATE_OPS }
    with slim.arg_scope(
        [slim.conv2d],
        weights_regularizer=slim.l2_regularizer(weight_decay),
        weights_initializer=slim.variance_scaling_initializer(),
        activation_fn=tf.nn.relu,
        normalizer_fn=slim.batch_norm,
        normalizer_params=batch_norm_params ):
        with slim.arg_scope([slim.batch_norm],**batch_norm_params):
            with slim.arg_scope([slim.max_pool2d],padding='SAME') as arg_sc:
                return arg_sc

#定义瓶颈函数(核心方法)
@slim.add_arg_scope
def bottleneck(inputs,depth,depth_bottleneck,stride,outputs_collections=None,scope=None):
    with tf.variable_scope(scope,'bottleneck_v2',[inputs]) as sc:
        #获取输入的最后一个维度,输出通道数
        depth_in=utils.last_dimension(inputs.get_shape(),min_rank=4)
        #对输入进行batch_borm,接着用relu进行预激活
        preact=slim.batch_norm(inputs,activation_fn=tf.nn.relu,scope='preact')
        if depth==depth_in:
            #如果残差单元输入通道和输出通道数一样,就对inputs进行降采样
            shortcut=subsample(inputs,stride,'shortcut')
        else:
            #如果残差单元输入通道与输出通道数不一样,就使用stride步长的1*1卷积改变其通道数,是的输入通道和输出通道数一样
            shortcut=slim.conv2d(preact,depth,[1,1],stride=stride,normalizer_fn=None,activation_fn=None,scope='shortcut')
        #定义残差
        #第一步:1*1,stride=1,输出通道数为depth_bottleneck的卷积
        #第二步:3*3,stride=stride,输出通道数为depth_bottleneck的卷积
        #第三步:1*1,stride=1,输出通道数为depth的卷积
        residual=slim.conv2d(preact,depth_bottleneck,[1,1],stride=1,scope='conv1')
        residual=slim.conv2d(residual,depth_bottleneck,[3,3],stride=stride,scope='conv2')
        residual=slim.conv2d(residual,depth,[1,1],stride=1,scope='conv3')
        output=shortcut+residual

        #将结果添加到outputs_collections
        return utils.collect_named_outputs(outputs_collections,sc.name,output)

#定义生成resnet_v2的主函数
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              global_pool=True,
              include_root_block=True,
              reuse=None,
              scope=None):
    with tf.variable_scope(scope,'resnet_v2',[inputs],reuse=reuse) as sc:
        end_point_collections=sc.original_name_scope+'_end_points'
        #用slim.arg_scope将slim.conv2d bottleneck stack_blocks_dense 3个函数的参数outputs_collections设置为end_point_collections
        with slim.arg_scope([slim.conv2d,bottleneck,stack_block_dense],outputs_collections=end_point_collections):
            net=inputs

            if include_root_block:
                #根据include_root_block标记,创建resnet最前面一层的卷积神经网络
                with slim.arg_scope([slim.conv2d],activation_fn=None,normalizer_fn=None):
                    net=conv2d_same(net,64,7,stride=2,scope='conv1')
                net=slim.max_pool2d(net,[3,3],stride=2,scope='pool1')
            #利用stack_blocks_dense将残差学习模块完成
            net=stack_block_dense(net,blocks)
            net=slim.batch_norm(net,activation_fn=tf.nn.relu,scope='postnorm')

            if global_pool:
                #根据标记添加平均池化层
                net=tf.reduce_mean(net,[1,2],name='pool5',keep_dims=True)

            if num_classes is not None:
                #根据是否有分类数,添加一个输出通道为num_classes的1*1卷积
                net=slim.conv2d(net,num_classes,[1,1],activation_fn=None,normalizer_fn=None,scope='logits')

            #utils.convert_collection_to_dict将collection转化为dict
            end_points=utils.convert_collection_to_dict(end_point_collections)

            if num_classes is not  None:
                #添加一个softmax输出层
                end_points['prediction']=slim.softmax(net,scope='prediction')

            return net,end_points

#定义resnet_v2_50的生成方法
def resnet_v2_50(inputs,
                 num_classes=None,
                 global_pool=True,
                 reuse=None,
                 scope='resnet_v2_50'
                 ):
    #设计50层的resnet
    #四个blocks的units数量为3、4、6、3,总层数为(3+4+6+3)*3+2=50
    #钱3个blocks包含步长为2的层,总尺寸244/(4*2*2*2)=7 输出通道变为2048
    blocks=[
        Block('block1',bottleneck,[(256,64,1)]*2+[(256,64,5)]),
        Block('block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1) ]* 5 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)] * 3)
    ]
    return resnet_v2(inputs,blocks,num_classes,global_pool,include_root_block=True,reuse=reuse,scope=scope)

#定义resnet_v2_101的生成方法
def resnet_v2_101(inputs,
                 num_classes=None,
                 global_pool=True,
                 reuse=None,
                 scope='resnet_v2_50'
                 ):
    #设计50层的resnet
    #四个blocks的units数量为3、4、23、3,总层数为(3+4+23+3)*3+2=101
    #钱3个blocks包含步长为2的层,总尺寸244/(4*2*2*2)=7 输出通道变为2048
    blocks = [
        Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 5)]),
        Block('block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
        Block('block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
        Block('block4', bottleneck, [(2048, 512, 1)] * 3)
    ]
    return resnet_v2(inputs,blocks,num_classes,global_pool,include_root_block=True,reuse=reuse,scope=scope)

#定义测试运行时间函数
def time_tensorflow_run(session, target, info_string):

    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches+num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time()-start_time

        if i >= num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %(datetime.now(), i-num_steps_burn_in, duration))
                total_duration += duration
                total_duration_squared += duration*duration

    mn = total_duration/num_batches
    vr = total_duration_squared/num_batches-mn*mn
    sd = math.sqrt(vr)

    print('%s: %s across %d steps, %.3f +/- %3.3f sec/batch' %(datetime.now(), info_string, num_batches, mn, sd))
if __name__=='__main__':
    batch_size = 32
    height, width = 224, 224
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(resnet_arg_scope(is_training=False)):
        net, end_points = resnet_v2_50(inputs, 1000)

    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    num_batches = 100
    time_tensorflow_run(sess, net, 'Forward')










阅读更多
文章标签: tensorflow resnet
个人分类: 深度学习 tensorflow
上一篇Ames 房价预测
下一篇机器学习的降维和聚类
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭