吴恩达机器学习笔记系列(四)——线性回归

一.model representation(模型描述)

1.变量含义:

m = 样本数量

x = 输入变量

y = 输出变量

(x,y)——表示一组训练样本

xi,yi ( x i , y i ) ——第 i 个训练样本

如下图:y^1=460, x^1=2104。

这里写图片描述

2.监督学习问题描述如下:

这里写图片描述
hypothesis(假设);

对于线性问题,x与y的映射关系式可以表示为: hθ(x)=θ0+θ1x h θ ( x ) = θ 0 + θ 1 x 记为式①),则问题转化为:

​ 找到合适的 θ0 θ 0 θ1 θ 1 的值,使得 hθ(x) h θ ( x ) 近似于训练样本(x,y)中的 y 的值。


3.cost function 代价函数

线性回归问题转到求解cost function上面来,即找出最符合要求的 θ0 θ 0 θ1 θ 1 ,使得式① 计算的值最接近 y 的值,即求二者之间差值最小的情况下 θ0 θ 0 θ1 θ 1

minimize m i n i m i z e 12mmi=1(hθ(x(i)y(i))2 1 2 m ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) 2 ——①

(θ0,θ1) ( θ 0 , θ 1 )

​ 其中: hθ(x(i) h θ ( x ( i ) 是预测值; y(i) y ( i ) 是样本实际值。

注意:为什么成本函数包括乘以1 /(2m)?

a). 1/m部分是这样的成本是按比例缩放的。 在本课程的后面,我们将比较不同规模训练集的成本值J.
b). 1/2部分是一个微积分技巧,所以当我们计算偏导数时,它会被分子中出现的’2’抵消。 这节省了我们在成本函数中的计算。

由此得到cost function (也被称作squared error function均方差函数) 的表达式(记为式②):

J(θ0,θ1)=12mmi=1(hθ(x(i)y(i))2 J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) 2 ——②

注:上式也被称作squared error function(均方差函数)

这里写图片描述

(1)简化的cost function 理解

①:

这里写图片描述

对于线性回归问题的模型,当 θ0 θ 0 不为0时,式①的图像纵轴交点不为零;当 θ0 θ 0 =0时,式①为过原点的直线,对应的代价函数 J(θ) J ( θ ) 也简化了。

线性回归问题的目标就是:找出使得 J(θ0,θ1) J ( θ 0 , θ 1 ) 的值最小的参数 θ0 θ 0 θ1 θ 1 的值。

②:

这里写图片描述

从左图看,黑色线表示样本实际的线性回归方程,红色和蓝色线分别表示 θ1 θ 1 为0和0.5时的回归方程,可以看出红色线上每个样本的预测值( h(θ1) h ( θ 1 ) )距离真实的值(y值)的长度分别是图中垂直线段的长度(| yh(θ1) y − h ( θ 1 ) |)。红色线上各样本处的距离长度均大于蓝色线,说明蓝色线的回归效果更好。即对该样本数据来说,线性回归的性能排序为: θ1 θ 1 =1 > θ1 θ 1 =0.5 > θ1 θ 1 0。

对应在右图有同样的结论。通过计算可以发现 θ1 θ 1 的值为1,0.5和0时得到了代价函数的值分别是0,0.58和 146 14 6 ,我们的目标是使 J(θ1) J ( θ 1 ) 越小越好,所以有性能排序为: θ1 θ 1 =1 > θ1 θ 1 =0.5 > θ1 θ 1 0。

(2)更复杂的cost function的图像

θ0!=0 θ 0 ! = 0 时, J(θ0,θ1) J ( θ 0 , θ 1 ) 的图像是三维立体的一个凹面,最低点为最优解。

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值