用洗牌的方式估计e的值

将一副有顺序的扑克牌(54张)洗乱,问任何一张牌都不在自己的初始位置上的概率是多少?

设n元素的全排列中,有k个元素就在自己原本位置上的排列个数为s(n,k)

那么会有如下一些容易得到的性质:

\sum_{i=0}^{n}s(n,i)=n!

s(n,k)=s(n-k,0)\cdot C_n^k ,为方便,假设s(0,0)=1

为了得出通项公式,先观察规律:s(1,0)=0,s(2,0)=1,s(3,0)=2,s(4,0)=9,s(5,0)=44,s(6,0)=265

由上面的规律,不妨假设:s(n,0)=s(n-1,0)\cdot n+(-1)^n,n\geq 1

s(n-1,0)继续展开,可以得到如下通项公式:s(n,0)=s(1,0)\cdot n! +(-1)^2\frac{n!}{2!}+(-1)^3\cdot \frac{n!}{3!}+...+(-1)^n=\sum_{i=2}^n(-1)^i\frac{n!}{i!}(n\geq 2)

下面证明它的正确性。

首先,n=2时该通项公式成立。

假设2≤n≤k时公式成立,那么n=k+1时,由条件②可知:

s(k+1,0)=(k+1)!-s(k+1,1)-...-s(k+1,k+1)

=(k+1)!-s(k,0)C_{k+1}^1-s(k-1,0)C_{k+1}^2-...-s(0,0)C_{k+1}^{k+1}

=(k+1)!-\sum_{t=0}^kC_{k+1}^ts(t,0)

也就是要证明:(k+1)!=\sum_{t=2}^{k+1}C_{k+1}^ts(t,0)+1*

化简:1=\frac{1}{(k+1)!}+\sum_{t=2}^{k+1}\frac{1}{(k+1-t)!}\sum_{i=2}^t\frac{(-1)^i}{i!}

由于n=k时公式已经成立,对比n=k+1相对于n=k时右边的新增的项,原式等同于证明:

-\frac{1}{(1+k)!}=-\frac{1}{k!}+\sum_{m=2}^{k+1}(-1)^m\frac{1}{m!}\frac{1}{(k+1-m)!}

\sum_{m=0}^{k+1}(-1)^m\frac{1}{m!}\frac{1}{(k+1-m)!}=0

也就是\sum C_{k+1}^m(-1)^m=(1+(-1))^{k+1}=0

由此,上式得证。

至此,我们终于确定了s(n,0)=\sum_{i=2}^n(-1)^i\frac{n!}{i!},当n≥2时;

据此,洗牌问题的概率不难求出:P=\frac{s(54,0)}{54!}=\sum_{i=2}^{54}\frac{-1^i}{i!}\approx 36.8%

对比e^x的泰勒展开和s(n,0)不难看出来,当牌的数目越多的时候,所求得得概率就会越接近\frac{1}{e}

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值