用洗牌的方式估计e的值

将一副有顺序的扑克牌(54张)洗乱,问任何一张牌都不在自己的初始位置上的概率是多少?

设n元素的全排列中,有k个元素就在自己原本位置上的排列个数为s(n,k)

那么会有如下一些容易得到的性质:

\sum_{i=0}^{n}s(n,i)=n!

s(n,k)=s(n-k,0)\cdot C_n^k ,为方便,假设s(0,0)=1

为了得出通项公式,先观察规律:s(1,0)=0,s(2,0)=1,s(3,0)=2,s(4,0)=9,s(5,0)=44,s(6,0)=265

由上面的规律,不妨假设:s(n,0)=s(n-1,0)\cdot n+(-1)^n,n\geq 1

s(n-1,0)继续展开,可以得到如下通项公式:s(n,0)=s(1,0)\cdot n! +(-1)^2\frac{n!}{2!}+(-1)^3\cdot \frac{n!}{3!}+...+(-1)^n=\sum_{i=2}^n(-1)^i\frac{n!}{i!}(n\geq 2)

下面证明它的正确性。

首先,n=2时该通项公式成立。

假设2≤n≤k时公式成立,那么n=k+1时,由条件②可知:

s(k+1,0)=(k+1)!-s(k+1,1)-...-s(k+1,k+1)

=(k+1)!-s(k,0)C_{k+1}^1-s(k-1,0)C_{k+1}^2-...-s(0,0)C_{k+1}^{k+1}

=(k+1)!-\sum_{t=0}^kC_{k+1}^ts(t,0)

也就是要证明:(k+1)!=\sum_{t=2}^{k+1}C_{k+1}^ts(t,0)+1*

化简:1=\frac{1}{(k+1)!}+\sum_{t=2}^{k+1}\frac{1}{(k+1-t)!}\sum_{i=2}^t\frac{(-1)^i}{i!}

由于n=k时公式已经成立,对比n=k+1相对于n=k时右边的新增的项,原式等同于证明:

-\frac{1}{(1+k)!}=-\frac{1}{k!}+\sum_{m=2}^{k+1}(-1)^m\frac{1}{m!}\frac{1}{(k+1-m)!}

\sum_{m=0}^{k+1}(-1)^m\frac{1}{m!}\frac{1}{(k+1-m)!}=0

也就是\sum C_{k+1}^m(-1)^m=(1+(-1))^{k+1}=0

由此,上式得证。

至此,我们终于确定了s(n,0)=\sum_{i=2}^n(-1)^i\frac{n!}{i!},当n≥2时;

据此,洗牌问题的概率不难求出:P=\frac{s(54,0)}{54!}=\sum_{i=2}^{54}\frac{-1^i}{i!}\approx 36.8%

对比e^x的泰勒展开和s(n,0)不难看出来,当牌的数目越多的时候,所求得得概率就会越接近\frac{1}{e}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值