将一副有顺序的扑克牌(54张)洗乱,问任何一张牌都不在自己的初始位置上的概率是多少?
设n元素的全排列中,有k个元素就在自己原本位置上的排列个数为。
那么会有如下一些容易得到的性质:
①
② ,为方便,假设。
为了得出通项公式,先观察规律:
由上面的规律,不妨假设:
将继续展开,可以得到如下通项公式:
下面证明它的正确性。
首先,n=2时该通项公式成立。
假设2≤n≤k时公式成立,那么n=k+1时,由条件②可知:
。
也就是要证明:*
化简:
由于n=k时公式已经成立,对比n=k+1相对于n=k时右边的新增的项,原式等同于证明:
即,
也就是。
由此,上式得证。
至此,我们终于确定了,当n≥2时;
据此,洗牌问题的概率不难求出:
对比的泰勒展开和不难看出来,当牌的数目越多的时候,所求得得概率就会越接近。