泰勒公式推导

在x=a处作以导数为斜率的切线,用切线来近似函数值时,误差Δy是Δx的高阶无穷小,

换句话说,\Delta_1=f(x)-f(a)-f'(a)(x-a) 在x\rightarrow a时,是(x-a)的高阶无穷小。

或者写成形式:f(x)=f(a)+f'(a)(x-a)+o(x-a)

类似地,假设f'(x)在x=a处也是可导的,那么:

\lim \frac{\Delta_1}{ (x-a)^2 }=\lim \frac{f'(x)-f'(a)}{2(x-a)}=\frac{1}{2}f''(a)

因此,

 \Delta_2=\Delta_1-\frac{1}{2}f''(a)(x-a)^2 在x\rightarrow a时,是(x-a)^2的高阶无穷小。

因此,f(x)=f(a)+f'(a)(x-a)+\frac{1}{2}f''(a)(x-a)^2+o((x-a)^2)

类似的推导下去,就得到了具有皮亚诺余项的泰勒公式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 泰勒公式是一种近似函数值的方法,它可以用来估算一个函数在某一点附近的值。 设函数f(x)在x=a处可导,那么它的n阶导数存在。我们可以用如下公式来近似函数f(x)在x=a附近的值: f(x) ≈ f(a) + f'(a)(x-a) + (f''(a)/2!) (x-a)^2 + ... + (f^(n)(a)/n!) (x-a)^n 这就是泰勒公式的基本形式。可以看出,随着n的增大,泰勒公式的精度也会增高。 为了证明这个公式,我们可以使用泰勒公式的基本形式来展开函数f(x): f(x) = f(a) + ∑(n=1,∞) (f^(n)(a)/n!) (x-a)^n 然后我们可以使用数学归纳法证明: 1.当n=0时,泰勒公式成立 2.假设当n=k时,泰勒公式成立 3.当n=k+1时, f(x) = f(a) + ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n + (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n 与 f(x)的差值为 R(k+1)(x) = (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) 由于 f(a) = f(x) -R(k+1)(x) 成立 所以当n=k+1时,泰勒公式仍然成立。 所以,对于任意的正整数n,泰勒公式都成立 ### 回答2: 泰勒公式是用来近似表示一个函数在某个点附近的展开式。我们可以用微积分的方法来证明泰勒公式。 设函数f(x)在区间[a,b]上连续,在(a,b)内具有各阶导数,且f(x)的(n+1)阶导数在这个区间内连续。那么对于这个区间内的任意一点x,存在一个点ξ,保证: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! + Rⁿ(x) 其中Rⁿ(x)为Lagrange余项,可以表示为:Rⁿ(x) = (fⁿ⁺¹(ξ)(x-a)ⁿ⁺¹)/(n+1)! 为了证明泰勒公式,我们可以根据函数的导数定义和极限的性质进行推导。 首先,我们可以使用高阶导数的定义,对于x=a时,将函数f(x)进行泰勒展开。然后,使用导数定义的极限性质,我们可以得到展开式中各阶导数的表达式。 接着,我们用极限来证明Lagrange余项的存在性。我们可以构造一个辅助函数g(t),然后使用中值定理来证明在(a,b)内存在一个点ξ,使得Rⁿ(x)等于g(t)的极限。 最后,使用极限的性质以及泰勒级数的收敛性条件,我们可以得到泰勒公式的证明。根据展开式中各项的逐渐趋近于零,我们可以得到当n趋于无穷大时,Rⁿ(x)趋近于零,从而得到f(x)在a点附近的泰勒展开式。 综上所述,我们可以用微积分的方法证明了泰勒公式。 ### 回答3: 泰勒公式是微积分中非常重要的一个公式,可以用来近似计算函数在某一点附近的值。现在我们用微积分的知识来证明泰勒公式。 假设函数f(x)在某一点a处连续,并且在开区间(a, b)上存在n+1阶导数。我们要证明泰勒公式: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x) 其中R_n(x)是余项,表示泰勒多项式和原函数之差。 首先,我们定义一个辅助函数,称为Lagrange中值定理函数,记作g(t) = f(x) - P_n(x),其中P_n(x)表示泰勒多项式的和式。我们可以得到g(a) = 0,而g(x)在(a, b)上具有(n+1)阶导数。 根据Lagrange中值定理,我们可以找到一个介于x和a之间的数c,使得g'(c) = 0。同理,我们可以找到介于x和c之间的数d,使得g''(d) = 0。通过不断重复这个过程,我们可以找到介于x和a之间的一系列数,把它们依次命名为c1、c2、c3、...,使得g^n(cn) = 0。 现在,我们可以考虑余项R_n(x)。根据Lagrange中值定理,我们可以推导出: R_n(x) = g(x) = g^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 由于g^(n+1)(c_n+1) = f^(n+1)(c_n+1) - P_n^(n+1)(c_n+1) = f^(n+1)(c_n+1) - 0 = f^(n+1)(c_n+1),其中P_n^(n+1)(c_n+1)表示泰勒多项式的高阶导数,由于是和式,高阶导数为0。 所以,我们得到: R_n(x) = f^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 这样,我们通过微积分的知识证明了泰勒公式。这个公式在近似计算中具有广泛的应用,可以有效地帮助我们进行函数值的估计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值