傅里叶级数的直观理解

本文受3Blue1Brown视频启发,深入浅出地介绍了傅里叶级数的概念。傅里叶级数能将任意函数分解为不同频率的三角函数之和。通过求积分得到的系数cn控制了每个频率的振幅和相位。对于实值函数,傅里叶级数表现为正弦波的叠加;而对于复值函数,它可以逼近复杂的闭合曲线。这种表示法揭示了周期性信号的内在结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文由3Blue1Brown的视频启发。
https://www.bilibili.com/video/BV1pW411J7s8
https://www.bilibili.com/video/BV1vt411N7Ti

傅里叶级数用来将一个函数 f ( t ) f(t) f(t)表示成无数个不同频率的三角函数的和。

部分和表达式:
s N ( t ) = ∑ n = − N N c n e i 2 π n t P s_N(t)=\sum_{n=-N}^Nc_ne^{i\frac{2\pi n t}{P}} sN(t)=n=

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值