Python数据处理性能对比,原生,Pandas,Numpy哪个更优秀

这篇博客通过实验对比了Python原生、Pandas和Numpy在数据处理上的性能。结果显示,Numpy的速度显著优于Pandas,但Pandas在数据科学任务中更便于使用。作者强调,选择哪种工具应根据具体任务和处理时间来决定。
摘要由CSDN通过智能技术生成

今天为大家分享一个关于数据处理性能的对比,从原生,Pandas ,Numpy这三个方面对比?你觉得哪个更优秀呢?对于一个数据科学家来说,速度和时间是一个很至关重要的的因素

下图显示了我的实验结果(详情如下),与纯Python的处理速度做出对比。

Python数据处理性能对比,原生,Pandas,Numpy哪个更优秀

 

如你所见,Numpy的表现比Pandas的表现要好几倍。我个人喜欢用Pandas来简化许多繁琐的数据科学任务,它是我的首选工具。但是如果预计的处理时间超过多个小时,那么很遗憾,我只能使用Numpy来替代Pandas。

我非常清楚实际的性能可能会有很大的不同,这取决于任务和处理类型。所以请把这些结果仅仅作为参考。没有任何一个单独的测试可以全面对比所有软件工具的性能。

简介

在下面的 Notebook 中你将会比较 Python 原生方法, Pandas 和 Numpy 处理数据的速度。

 

更多Python视频、源码、资料加群683380553免费获取

导入模块

Python数据处理性能对比,原生,Pandas,Numpy哪个更优秀

 

制作模拟随机数据集

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值