#使用ROCR包进行评价
示例代码:
## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf)
## precision/recall curve (x-axis: recall, y-axis: precision)
perf1 <- performance(pred, "prec", "rec")
plot(perf1)
## sensitivity/specificity curve (x-axis: specificity,
## y-axis: sensitivity)
perf1 <- performance(pred, "sens", "spec")
plot(perf1)
简单来讲,就是先用prediction函数做出一个prediction-class,用这个prediction和两个横纵坐标指标作为输入,得到performance,然后对performance画图就得到想要的图了。
#使用pROC包进行评价
主函数是roc,pROC package基本就使用这一个函数就可以完成操作。