R语言:用ROCR包和pROC包评价二分类预测

#使用ROCR包进行评价
示例代码:

## computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf)
## precision/recall curve (x-axis: recall, y-axis: precision)
perf1 <- performance(pred, "prec", "rec")
plot(perf1)
## sensitivity/specificity curve (x-axis: specificity,
## y-axis: sensitivity)
perf1 <- performance(pred, "sens", "spec")
plot(perf1)

简单来讲,就是先用prediction函数做出一个prediction-class,用这个prediction和两个横纵坐标指标作为输入,得到performance,然后对performance画图就得到想要的图了。

#使用pROC包进行评价
主函数是roc,pROC package基本就使用这一个函数就可以完成操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值