图像内容分类

这篇博客介绍了图像分类实验,重点探讨了KNN算法和稠密SIFT特征在手势识别中的应用。通过KNN算法实现分类,观察不同K值对结果的影响,同时展示了稠密SIFT如何提高图像特征提取的效率。最终,构建了一个简单的手势识别系统,分析了训练集大小对识别准确性的影响。
摘要由CSDN通过智能技术生成

本次关于图像分类的实验,一共分为以下三个部分:
1.K邻近分类法(KNN)
2.用稠密SIFT为图像特征
3.图像分类:手势识别
一、实验原理
K邻近分类法
在分类方法中最简单且用得最多的一种方法之一就是KNN,简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。
k-近邻算法是一种基本分类与回归方法;它是是监督学习中分类方法的一种,属于懒散学习法(惰性学习方法)。
存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

KNN算法的一般流程
(1)收集数据:可以使用任何方法。
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3)分析数据:可以使用任何方法。
(4)训练算法:此步骤不适用于k-近邻算法。
(5)测试算法:计算错误率。
(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行KNN算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续处理

用稠密SIFT为图像特征
在整幅图像上用一个规则的网格应用SIFT描述算子可以得到稠密SIFT的表示形式。
(以下参考: https://blog.csdn.net/breeze5428/article/details/25055291
dense SIFT与做特征匹配所用到的SIFT的不同点。dense SIFT是提取我们感兴趣的patches中的每个位置的SIFT特征。而通常做特征匹配的SIFT算法只是得到感兴趣区域或者图像上若干个稳定的关键点的SIFT特征。目前关于dense SIFT提取比较流行的做法是,拿一个size固定的掩模或者bounding box,以一定的步长(stepsize)在图像上自左向右、从上到下提取dense SIFT的patch块。

手势识别
手势识别主要是用稠密SIFT描述子来表示这些手时图像,并建立一个简单的手势识别系统

二、代码及其实现
1、KNN
下面的脚本将创建两个不同的二维点集,每个点集有两类,用Pickle模块来保存创建的数据

# -*- coding: utf-8 -*-
from numpy.random import randn
import pickle
from pylab import *

# create sample data of 2D points
n =400
# two normal distributions
class_1 = 0.6 * randn(n,2)
class_2 = 1.2 * randn(n,2) + array([5,1])
labels = hstack((one
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值