Bi-Classifier Determinacy Maximization for Unsupervised Domain Adaptation

本文提出Bi-Classifier Determinacy Maximization(BCDM)方法,针对无监督领域适应,通过Classifier Determinacy Disparity(CDD)度量优化分类器的确定性和多样性。BCDM在最大化CDD损失时更新分类器,探索多样化的输出空间,然后最小化CDD损失更新特征提取器,生成具有判别性的特征,提高模型在目标域的性能。
摘要由CSDN通过智能技术生成

Abstract

方法:Bi-Classifier Determinacy Maximization (BCDM)。

针对问题:之前的方法通常利用双分类器之间的分歧性(disagreement)来学习可转移的表示,然而,它们往往疏忽了目标域中分类器的断定性(determinacy),这可能会导致模型缺乏特征辨别能力。

新的度量方法:Classifier Determinacy Disparity (CDD) metric,CDD将分类器差异表述为不同目标预测的类相关性,并隐含地引入了对目标特征可分辨性的约束。

Introduction

两种进行对抗领域适应的范式:

  1. 构建一个领域判别器;这类范式能够加强特征的transferability,但会恶化特征的discriminability。

  2. 利用两个不同的分类器;这类范式分类器差异损失的选择会对结果影响很大。Maximum Classifier Discrepancy(MCD)直接考虑两个分类器预测结果的 ​ 距离(​),只考虑了相应类位上的双分类器差异,而忽略了不同类间的相关性信息约束。

本文提出BCDM同样使用两个分类器来进行对抗适应,区别于MCD,CDD包含了所有双分类器的预测不一致的概率,其定义为双分类器不同类预测之间的乘积之和。训练时,先最大化CDD损失更新分类器,使双分类器产生跨类分歧,促进探索多样化的输出空间;再最小化CDD损失更新特征提取器,生成判别性特征使预测结果一致且确定,将两个领域的类推到一起。

Related Work

...

Bi-Classifier Determinacy Maximization

参数定义:包含n_s个样本的有标记签源域,S=\{X_s,Y_s\}=\{(x^s_i,y^s_i)\}^{n_s}_{i=1}$y_i^s表示x^s_i对应的标签;包含n_t个样本的无标签目标域,T=\{X_t\}=\{x^t_j\}^{n_t}_{j=1};本文目的是为了学习一个深度神经网络 Φ: X_t\rightarrow Y_t\Phi : X_t\rightarrow Y_t;模型包含一个特征提取器 G,以及两个分类器 C_1 和 C_2\theta _g\theta _{c_1} 和 \theta _{c_2} 使是相应的参数。

上图为 BCDM 的整体框架。第一步,最小化源域分类损失更新整体网络(源域上的监督训练);第二部,最大化 CDD 更新双分类器参数;第三步,最大化 CDD 更新特征提取器(generator)参数,使其能够生成具有 transferable 和 discriminative 的特征。

Classifier Determinacy Disparity

CDD 损失的定义:

\Gamma(p_1,p_2)=\sum_{m,n=1}^KA_{mn}-\sum_{m=1}^KA_{mm}=\sum_{m\neq n}^KA_{mn}

其中 p_1, p_2 \in R^{K*1} 分别表示两个分类器的输出的 SoftMax 概率,且\sum_{k=1}^Kp^k_j=1,其中p^k_j\ge0\forall k=1,\cdots,KA=p_1p_2^\top ∈R^{K*K},将 A 这样定义能够有效评估双分类器对不同类的预测相关性,为了使分类器在预测相关性方面的差异最小化,也就是使两个预测一致且相关,即使A的对角线元素最大化,这也使得预测结果能够以较高的置信度来确定预测类。A的非对角线元素可以看作是两个分类器的细粒度混淆信息。

这样来看 CDD 就包含了两个分类器所有的预测的概率。

Bi-Classifier Determinacy Maximization

最小化源域的分类损失更新 G, C_1, C_2 的参数:

min_{\theta _g,\theta _{c_1},\theta _{c_2}}\frac{1}{n_s}\sum^{n_s}_{i=1}L_{cls}(x^s_i,y^s_i)=\frac{1}{2n_s}\sum^{n_S}_{i=1}\sum^2_{j=1}L_{ce}(p_{j_i},y^s_i)

其中p_{j_i} = C_j(G(x^s_i))L_{cd}(\cdot,\cdot)是交叉熵损失。

在目标域上最大化 C

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值