学点数学(3)-函数空间


本博文为观看《上海交通大学公开课-数学之旅-函数空间 》所整理笔记,公开课视频连接:http://open.163.com/newview/movie/free?pid=M8PTB0GHI&mid=M8PTBUHT0

数学中的空间 是 大家研究工作的对象和这些对象遵循的规则 组成的。数学空间的两个核心要素:元素和结构(线性结构和拓扑结构)(砖块为一个个元素,按照一定的结构盖成房子,就有了空间。房子是一个空间,但是一堆任意的砖,不一定是房子,因为,没有说明结构问题)

说到 距离 ,大多数人脑海里最熟悉的就是两点之间的欧式距离。实际生活中还有很多很多的距离:地球仪上两个地点的距离、城区距离、两条曲线之间的距离(取最大差异为距离,当最大差异都为0,两条曲线才为一条。)

1.距离:从具体到抽象

两个向量之间的距离

x = ( x 1 , . . . , x n ) x=(x_1,...,x_n) x=(x1,...,xn) y = ( y 1 , . . . , y n ) y=(y_1,...,y_n) y=(y1,...,yn)之间的距离,可以用下面三种方式衡量:

1.两向量(点)之间的欧几里得距离:
d 1 ( x , y ) = ( x 1 − y 1 ) 2 + . . . + ( x n − y n ) 2 d_1(x,y)=\sqrt{(x_1-y_1)^2+...+(x_n-y_n)^2} d1(x,y)=(x1y1)2+...+(xnyn)2
2.最大分量差
d 2 ( x , y ) = m a x ∣ x 1 − y 1 ∣ , . . . , ∣ x n − y n ∣ d_2(x,y)=max{|x_1-y_1|,...,|x_n-y_n|} d2(x,y)=maxx1y1,...,xnyn
3.城区距离
d 3 ( x , y ) = ∣ x 1 − y 1 ∣ + . . . + ∣ x n − y n ∣ d_3(x,y)=|x_1-y_1|+...+|x_n-y_n| d3(x,y)=x1y1+...+xnyn
上面三种方式都可以定义为 x , y x, y x,y 之间的距离,它们之间不尽相同,确有着核心的共同点,抽象出来,就可以定义一个更一般的距离。

距离的定义

X X X是一个非空的集合,任意给定一对集合中的元素 x , y x,y x,y,都能确定一个实数 d ( x , y ) d(x,y) d(x,y) x , y x,y x,y 对应,并且 d ( x , y ) d(x,y) d(x,y)满足:

1.非负性
d ( x , y ) > = 0 , d ( x , y ) = 0 < = > x = y d(x,y)>=0,d(x,y)=0<=>x=y d(x,y)>=0,d(x,y)=0<=>x=y
2.对称性
d ( x , y ) = d ( y , x ) d(x,y)=d(y,x) d(x,y)=d(y,x)
3.三角不等式
d ( x , y ) < = d ( x , z ) + d ( z , y ) d(x,y)<=d(x,z)+d(z,y) d(x,y)<=d(x,z)+d(z,y)
可称 d ( x , y ) d(x,y) d(x,y)是两个元素之间的距离。

在集合 X X X中定义了 距离,可以度量两个元素之间的远近。如果在集合 X X X中再规定线性结构,就可以得到一个线性度量空间。

线性结构:向量加法和数乘,且 满足(7条运算定律)加法的交换律,结合律,零元,负元;数乘的交换律,单位1,数乘与加法的结合律。

2.范数

有了线性度量空间, 可以在此基础上定义范数

范数的定义

R n R^n Rn上的映射 ∣ ∣ x ∣ ∣ ||x|| x满足以下三点,称 ∣ ∣ x ∣ ∣ ||x|| x R n R^n Rn上的范数:

1.非负性
∣ ∣ x ∣ ∣ > = 0 , ||x||>=0, x>=0,
2.其次性(多了一个属性)
∣ ∣ α ∣ ∣ = ∣ α ∣   ∣ ∣ x ∣ ∣ ,   ∀ α ∈ R , x ∈ R n ||\alpha||=|\alpha|\ ||x||,\ \forall\alpha \in R,x\in R^n α=α x, αR,xRn
3.三角不等式
∣ ∣ x + y ∣ ∣ < = ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ,   ∀ x , y ∈ R n ||x+y||<=||x||+||y||,\ \forall x,y \in R^n x+y<=x+y, x,yRn
范数可以看做:元素到零点的距离,用于比较不同元素的大小

由范数可以定义距离(范数定义的表达式满足距离定义中的三点要求,)
∣ ∣ x − y ∣ ∣ = > d ( x , y ) ||x-y||=>d(x,y) xy=>d(x,y)
由距离不一定能定义范数(距离定义需要多加其次性才能定义范数):
d ( 0 , x ) = > ∣ ∣ x ∣ ∣ d(0,x)=>||x|| d(0,x)=>x

d ( 0 , α x ) = > ∣ ∣ α x ∣ ∣ d(0,\alpha x)=>||\alpha x|| d(0,αx)=>αx

d ( 0 , α x ) ≠ > ∣ α ∣   ∣ ∣ x ∣ ∣ d(0,\alpha x)\neq>|\alpha|\ ||x|| d(0,αx)=>α x

第三条不能由距离定义推导出来。

3.内积

赋予了范数或者距离的集合分别称为 赋范空间度量空间,加上线性结构,称为 线性赋范空间线性度量空间

赋范空间,有了向量的模长(度量向量的大小),但是还缺乏一个重要的概念,两个向量的夹角。

内积定义

( x , y ) ∈ R (x,y)\in R (x,y)R 且满足:

1.对称性
( x , y ) = ( y , x ) (x,y)=(y,x) (x,y)=(y,x)
2.对第一个变元具有线性性
( α x + β y , z ) = α ( x , z ) + β ( y , z ) (\alpha x+\beta y,z)=\alpha (x,z) +\beta(y,z) (αx+βy,z)=α(x,z)+β(y,z)
3.正定性
( x , x ) > = 0 ,   ( x , x ) = 0 < = > x = 0 (x,x)>=0, \ (x,x)=0 <=>x=0 (x,x)>=0, (x,x)=0<=>x=0
称(x,y)为内积。

向量各个分量的乘积累和可以定义为向量内积 ( x , y ) : = ∑ i = i m x i y i (x,y):=\sum_{i=i}^m x_i y_i (x,y):=i=imxiyi,

两个函数的内积: ( f , g ) : = ∫ − ∞ + ∞ f ( x ) g ( x ) d x (f,g):=\int_{-\infty}^{+\infty}f(x)g(x)dx (f,g):=+f(x)g(x)dx

内积可以导出范数:
( x , x ) = > ∣ ∣ x ∣ ∣ 2 (x,x)=>||x||^2 (x,x)=>x2
内积空间

在线性空间上定义内积,其空间称为内积空间。内积可以在空间中建立欧几里得几何学,如交角,垂直,和投影等,习惯上称其为欧几里得空间。(在这个空间做我们习惯的事情大部分都是对的)

希尔伯特空间

1904 年希尔伯特引入无穷实数数组并定义内积,称其空间为内积空间,在附加完备性,就成为希尔伯特 空间。(无穷维)(完备性空间在极限运算中,取极限不能跑出去)

巴拿赫空间

1922年,巴拿赫提出赋范空间,其完备的赋范空间称为巴拿赫空间。

4.拓扑

连续的概念不需要内积,甚至不需要距离,所以在距离的基础上再少一些属性,就可以定义拓扑(朋友圈)

拓扑-距离-范数-内积,四者从最熟悉的 距离出发,加属性得到 范数 ,进一步加属性得到 内积,从距离出发,减属性,得到 拓扑。(加了属性,内涵多了,外延就少了;相反内涵少了,外延就多了)

泛函分析: 研究无穷维内积空间/无穷维线性赋范空间中映射的数学分支(线性泛函分析,分线性泛函分析)

拓扑学: 研究拓扑空间的数学分支(点集拓扑,代数拓扑,微分拓扑)

泛函分析,拓扑学,抽象代数,为大学数学系的(新三高)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值