1.13 函数空间

函数空间

向量空间中每个点是向量,向量可以由基向量唯一表示,这个概念可以推广到函数空间。函数空间中每个点是一元函数,函数可以由基函数唯一表示。可以简单认为,函数空间的函数是满足一定条件(比如闭区间连续函数)的任意函数,如 x α , s i n x , c o s x , e x , l n x , s i n x 2 l n ( 1 + x ) x^\alpha,sinx,cosx,e^x,lnx,sinx^2ln(1+x) xα,sinx,cosx,ex,lnx,sinx2ln(1+x) 。那基函数是什么?和向量空间有什么不同?

先看函数空间和向量空间的相似之处。假设闭区间连续的任意函数 f ( x ) f(x) f(x) ,在闭区间等间隔取 m m m 个点,得到 m m m 个函数值 v = ( f ( 1 ) , f ( 2 ) , ⋯   , f ( m ) ) \mathbf{v} = (f(1),f(2),\cdots,f(m)) v=(f(1),f(2),,f(m)) ,这 m m m 个函数值是对函数 f ( x ) f(x) f(x) 的近似,也可以看作 m m m 维空间的向量,所以任意函数都对应 m m m 维空间的一个向量!根据向量空间基的存在性,任意函数都可以由基唯一表示。

m m m 趋于无穷时,向量 v \mathbf{v} v 就是函数 f ( x ) f(x) f(x) ,此时空间是无穷维空间,所以称为函数空间,不是有限维的向量空间,这是第一个差别,但都是线性空间。

有限维的向量空间中内积是分量之和,在无穷维函数空间,分量之和取极限,就是积分,所以函数空间中内积定义为两个函数闭区间的定积分 ( f ( x ) , g ( x ) ) = ∫ [ a , b ] f ( x ) g ( x ) d x (f(x),g(x)) = \int_{[a,b]}f(x)g(x)dx (f(x),g(x))=[a,b]f(x)g(x)dx ,这是第二个差别。当内积为零时,也称两个函数正交。函数范数就是闭区间的函数平方的定积分的平方根 ∥ f ( x ) ∥ = ∫ [ a , b ] f ( x ) 2 d x \|f(x)\| = \sqrt{\int_{[a,b]}f(x)^2dx} f(x)=[a,b]f(x)2dx

函数空间的基称为基函数。向量空间的基 E = ( e i = ( 0 , ⋯   , 1 , ⋯   , 0 ) , i ∈ [ 1 , m ] ) {E} = (\mathbf{e_i} = (0,\cdots,1,\cdots,0),\quad i \in [1,m] ) E=(ei=(0,,1,,0),i[1,m]) m m m 维向量 e i \mathbf{e_i} ei m m m 个分量,只有第 i i i 个分量为1,其他分量均为0。此时基函数只在某个实数点等于1,其它位置均为0,即
δ ( x , x 0 ) = 1 i f x = x 0 , 0 e l s e x ≠ x 0 \delta(x,x0) = 1 \quad if \quad x=x0, \quad 0 \quad else \quad x \ne x0 δ(x,x0)=1ifx=x0,0elsex=x0

x 0 x0 x0 取遍闭区间 [ a , b ] [a,b] [a,b] 内任意值时,就得到一组基函数。由于实数不可数,所以这种基函数个数也不可数。

另一组常用的基函数就是多项式函数 1 , x , x 2 , ⋯ 1,x,x^2,\cdots 1,x,x2, ,注意是无穷多,但是可数可列的。闭区间上任意连续函数都可唯一表示为
f ( x ) = a 0 1 + a 1 x + a 2 x 2 + ⋯ f(x) = a_0 1 + a_1 x + a_2 x^2 + \cdots f(x)=a01+a1x+a2x2+

( a 0 , a 1 , a 2 , ⋯   ) (a_0,a_1,a_2,\cdots) (a0,a1,a2,) 是系数。这类似于高数中著名的泰勒展开式,但不完全相同。泰勒展开式定理要求函数是 m m m 阶可微的,有余项,不是无穷项之和。而函数空间理论,只要求函数闭区间连续即可,没有余项。函数连续是个很低的条件,而 m m m 阶可微是比较高的条件,故函数空间理论适用更多的函数。很可惜多项式基函数不正交,可通过正交化使之正交,此时基函数称为Legendre(勒让德)多项式,它们在闭区间 [ − 1 , 1 ] [−1,1] [1,1] 正交。

最最重要的基函数就是三角函数 1 / 2 , s i n x , c o s x , s i n 2 x , c o s 2 x , , ⋯   , s i n n x , c o s n x , ⋯ 1/2,sinx,cosx,sin2x,cos2x,,\cdots,sinnx,cosnx,\cdots 1/2,sinx,cosx,sin2x,cos2x,,,sinnx,cosnx, ,注意是无穷多,但是可数可列的。闭区间上周期为 2 π 2\pi 2π 的任意连续函数都可唯一表示为

f ( x ) = a 0 1 / 2 + a 1 s i n x + b 1 c o s x + a 2 s i n 2 x + b 2 c o s 2 x + ⋯ f(x) = a_0 1/2 + a_1 sinx + b_1 cosx + a_2 sin2x + b_2 cos2x + \cdots f(x)=a01/2+a1sinx+b1cosx+a2sin2x+b2cos2x+

( a 0 , a 1 , b 1 , a 2 , b 2 , ⋯   ) (a_0,a_1,b_1,a_2,b_2,\cdots) (a0,a1,b1,a2,b2,) 是系数。这就是著名的傅立叶级数!三角函数最大的优点是正交的, ∫ [ 0 , 2 π ] s i n m x d x = 0 \int_{[0,2\pi]} sinmx dx = 0 [0,2π]sinmxdx=0 ∫ [ 0 , 2 π ] c o s n x d x = 0 \int_{[0,2\pi]} cosnx dx = 0 [0,2π]cosnxdx=0 ∫ [ 0 , 2 π ] s i n m x c o s n x d x = 0 \int_{[0,2\pi]} sinmx cosnx dx = 0 [0,2π]sinmxcosnxdx=0 ∫ [ 0 , 2 π ] s i n m x s i n n x d x = 0 , m ≠ n \int_{[0,2\pi]} sinmx sinnx dx = 0, m \ne n [0,2π]sinmxsinnxdx=0,m=n ∫ [ 0 , 2 π ] c o s m x c o s n x d x = 0 , m ≠ n \int_{[0,2\pi]} cosmx cosnx dx = 0, m \ne n [0,2π]cosmxcosnxdx=0,m=n 。由于正交,系数 ( a 0 , a 1 , b 1 , a 2 , b 2 , ⋯   ) (a_0,a_1,b_1,a_2,b_2,\cdots) (a0,a1,b1,a2,b2,) 解耦,可以独立计算出来。而且还是标准的 ∫ [ 0 , 2 π ] s i n 2 m x d x = π \int_{[0,2\pi]} sin^2mxdx = \pi [0,2π]sin2mxdx=π ∫ [ 0 , 2 π ] c o s 2 m x d x = π \int_{[0,2\pi]} cos^2mxdx = \pi [0,2π]cos2mxdx=π ,三角函数如同向量空间的标准正交基!上式对任意基函数取内积,得
∫ 0 , 2 π f ( x ) d x = ∫ 0 , 2 π a 0 1 / 2 d x = π a 0 ∫ 0 , 2 π f ( x ) s i n n x d x = ∫ 0 , 2 π a n s i n n x s i n n x d x = π a n ∫ 0 , 2 π f ( x ) c o s n x d x = ∫ 0 , 2 π b n c o s n x c o s n x d x = π b n \int_{0,2\pi}f(x)dx = \int_{0,2\pi}a_01/2dx = \pi a_0\\ \int_{0,2\pi}f(x)sinnxdx = \int_{0,2\pi}a_nsinnxsinnxdx = \pi a_n\\ \int_{0,2\pi}f(x)cosnxdx = \int_{0,2\pi}b_ncosnxcosnxdx = \pi b_n 0,2πf(x)dx=0,2πa01/2dx=πa00,2πf(x)sinnxdx=0,2πansinnxsinnxdx=πan0,2πf(x)cosnxdx=0,2πbncosnxcosnxdx=πbn
傅立叶级数实际应用非常广泛,不仅数学性能好,而且对应很强的物理意义:频率,每个表示系数对应一个频率的能量,如 a 0 a_0 a0 是直流能量, ( a 1 , b 1 ) (a_1,b_1) (a1,b1) 是基频能量等。

当函数不是闭区间上的周期函数只是连续函数时,傅立叶级数变成傅立叶变换,基函数还是三角函数,只是不可数可列了。

实际中不可能取无穷多项的和,一般截取前 m m m 项的和,舍弃后面项的和,这就会产生误差。幸好,对于实际函数,后面项的和占比很少,而且取的项越多,占比越小。所以只要取足够多项的和,误差对实际影响很小。

函数空间的数学理论基础是:魏尔斯特拉斯逼近定理:1、闭区间上的连续函数可用多项式级数一致逼近。2、闭区间上周期为 2 π 2\pi 2π 的连续函数可用三角函数级数一致逼近。

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值