线性代数中解方程组的加减消元和求特征向量的加减消元的区别

学习线性代数的过程中我们会注意到解方程组的中有对系数矩阵进行加减消元化成行最简这个过程,而在学到特征向量这部分后,我们发现求特征向量也会有这一步。那么这两者有何区别呢?两者大体相同,不过在运算的技巧上有一些细微的差别:

  • 解方程组的加减消元必须老老实实的,一步一步认真的加减消元。
  • 求特征向量时的加减消元就有技巧了: 3 阶矩阵求特征向量时 3 个方程不要按部就班的加减消元,要学会偷懒,把一个方程直接写成三个零,用其中两个方程消元就够了。

下面我来分别举一个例子详加叙述。

解方程组

求如下方程组的基础解系和通解。

{ 5 x 1 + 7 x 2 + 2 x 3 = 0 3 x 1 + 5 x 2 + 6 x 3 − 4 x 4 = 0 4 x 1 + 5 x 2 − 2 x 3 + 3 x 4 = 0 \begin{cases} 5x_1 + 7x_2 + 2x_3 = 0 \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0 \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0 \\ \end{cases} 5x1+7x2+2x3=03x1+5x2+6x34x4=04x1+5x22x3+3x4=0

分析:要解方程组就要对方程组做同解变形,要做同解变形就要对系数矩阵做初等行变换。

解:

将系数矩阵用高斯消元法化成行最简矩阵

A = [ 5 7 2 0 3 5 6 − 4 4 5 − 2 3 ] → u n d e r o v e r [ 1 2 3 − 3 0 1 6 − 5 0 0 0 0 ] → u n d e r o v e r [ 1 0 − 8 7 0 1 6 − 5 0 0 0 0 ] = 记 B A = \begin{bmatrix} 5 & 7 & 2 & 0 \\ 3 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \end{bmatrix} \xrightarrow[under]{over} \begin{bmatrix} 1 & 2 & 3 & -3 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow[under]{over} \begin{bmatrix} 1 & 0 & -8 & 7 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xlongequal[]{记} B A=534755262043over under

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值