高光谱目标检测论文解读分享之全局到局部:一种分级高光谱影像目标检测算法

本文提出了一种全局到局部的分级HSI检测算法(G2LHTD),利用EMAP建模全局空间纹理,结合D2CEM考虑邻域空间信息,通过自适应邻域特征聚合策略提高小目标检测精度。实验证明其在小目标边界识别方面的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IEEE TGRS 2022:全局到局部:一种分级高光谱影像目标检测算法

题目

Global to Local: A Hierarchical Detection Algorithm for Hyperspectral Image Target Detection

作者

Zhonghao Chen , Graduate Student Member, IEEE, Zhengtao Lu, Hongmin Gao , Member, IEEE,
Yiyan Zhang , Graduate Student Member, IEEE, Jia Zhao , Danfeng Hong , Senior Member, IEEE,
and Bing Zhang , Fellow, IEEE

关键词

Adaptive neighborhood feature aggregation (ANFA), diverse-direction constrained energy minimization (D2CEM), extended morphological attribute profile (EMAP), global to local, hyperspectral image (HSI), target detection.

研究动机

实现背景和目标的良好分离,尤其要提高小目标的检测精度

模型

在这里插入图片描述

高光谱图像(HSI)以其强大的地物光谱信息捕捉能力在目标检测领域受到了广泛的关注,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值