题目
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
给定 n 的范围是 [1, 9]。
给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: "213"
示例 2:
输入: n = 4, k = 9
输出: "2314"
解题思路
观察发现,这是一个周期问题。
对于按顺序排好的列表nums
,以nums[0]
为首的排列有(n-1)!
个,如果(n - 1)! < k < 2 * (n - 1)!
,那么第k
个排列,就应该是以nums[1]
为首的排列中,第k - (n - 1)!
个,这样的话就变成了一个递归的问题。
对f(nums, k)
,递归的出口是k == 1
,此时直接将nums
输出即可
然后判断当前的k
和(n - 1)!
的大小关系,假设k / (n - 1)! = f ... ki
,则变成以nums[f]
为首的第ki
个排列
要注意的是,数组下标是从0
开始的,所以先对k -= 1
代码
class Solution:
def getPermutation(self, n: int, k: int) -> str:
def factorial(n: int) -> int:
ans = 1
for i in range(1, n + 1):
ans *= i
return ans
def helper(nums: list, k: int) -> str:
if k == 1:
return ''.join(map(str, nums))
factor = k // factorial(len(nums) - 1)
k %= factorial(len(nums) - 1)
return str(nums[factor]) + helper(nums[:factor] + nums[factor + 1:], k)
return helper([i for i in range(1, n + 1)], k - 1)