leetcode-60. 第k个排列

题目

给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。

说明:

给定 n 的范围是 [1, 9]。
给定 k 的范围是[1,  n!]。

示例 1:

输入: n = 3, k = 3
输出: "213"

示例 2:

输入: n = 4, k = 9
输出: "2314"

解题思路

观察发现,这是一个周期问题。
对于按顺序排好的列表nums,以nums[0]为首的排列有(n-1)!个,如果(n - 1)! < k < 2 * (n - 1)!,那么第k个排列,就应该是以nums[1]为首的排列中,第k - (n - 1)!个,这样的话就变成了一个递归的问题。

f(nums, k),递归的出口是k == 1,此时直接将nums输出即可
然后判断当前的k(n - 1)!的大小关系,假设k / (n - 1)! = f ... ki,则变成以nums[f]为首的第ki个排列

要注意的是,数组下标是从0开始的,所以先对k -= 1

代码

class Solution:
    def getPermutation(self, n: int, k: int) -> str:
        def factorial(n: int) -> int:
            ans = 1
            for i in range(1, n + 1):
                ans *= i
            return ans

        def helper(nums: list, k: int) -> str:
            if k == 1:
                return ''.join(map(str, nums))
            factor = k // factorial(len(nums) - 1)
            k %= factorial(len(nums) - 1)
            return str(nums[factor]) + helper(nums[:factor] + nums[factor + 1:], k)

        return helper([i for i in range(1, n + 1)], k - 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值