SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval

本文介绍了一种基于多头自注意力机制的排名模型。该模型通过堆叠多头自注意力层来处理输入序列,并利用全连接网络进行最终的排名预测。实验在IstellaLETOR、MicrosoftLETOR30K及Yahoo!LETOR等数据集上进行,对比了多种基线方法,包括rankSVM、rankBoost等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结

加序列emb,multi-head self-attention/transformer

细节

当输入list排序变化后,用rank模型输出不变的排序list。multi-head self-attention堆叠解决。

representation-encoding-ranking

在这里插入图片描述

先用现有的ranking model做出来init ranking,再multi-head attention做encode,最后fnn做ranking。

交叉熵损失

实验

dataset

  1. Istella LETOR:http://blog.istella.it/istella-learning-to-rank-dataset/
  2. Microsoft LETOR 30K:http://research.microsoft.com/en-us/projects/mslr/
  3. Yahoo! LETOR:http://learningtorankchallenge.yahoo.com

baseline:rankSVM, rankBoost, MART, LambdaMart, DLCM, GSF

评估指标:ndcg@1,3,5,10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值