推荐系统rerank模型梳理&论文推荐

作者:忆昔,阿里首猜推荐算法工程师,欢迎勾搭交流,email: yufei.fyf@alibaba-inc.com

一个标准的工业推荐系统通常由三个阶段依次组成:召回、排序和重排。一直以来,召回和排序得到了持续的关注和长足的发展。而重排,由于直接从输入商品列表中生成了最终推荐列表及其展示顺序,也在逐渐受到关注并且展示出极大的潜力。这里总结了这么几类已发表并广泛接受的重排或者 LTR 工作:

1.【Point-wise 模型】和经典的 CTR 模型基本结构类似,如 DNN [8], WDL [9] 和 DeepFM [10]。和排序相比优势主要在于实时更新的模型、特征和调控权重。随着工程能力的升级,ODL [11] 和实时特征逐渐合并到排序阶段并且取得了较大提升。

2.【Pair-wise 模型】通过 pair-wise 损失函数来比较商品对之间的相对关系。具体来说,RankSVM [12], GBRank [13] 和 RankNet [2] 分别使用了 SVM、GBT 和 DNN。但是,pair-wise 模型忽略了列表的全局信息,而且极大地增加了模型训练和预估的复杂度。

3.【List-wise 模型】建模输入商品列表的整体信息和对比信息,并通过 list-wise 损失函数来比较序列商品之间的关系。LambdaMart [14]、MIDNN [3]、DLCM[6]、PRM [5] 和 SetRank [4] 分别通过 GBT、DNN、RNN、Self-attention 和 Induced self-attention 来提取这些信息。随着工程能力的升级,输入序列的信息和对比关系也上提到排序阶段中提取。

4.【Generative 模型】主要分为两种,一种如考虑了前序信息的,如 MIRNN [3] 和 Seq2Slate [15] 都通过 RNN 来提取前序信息,再通过 DNN 或者 Pointer-network 来从输入商品列表中一步步地生成最终推荐列表。最近的组合优化工作 Exact-K [16] 注重于直接对序列整体收益进行建模,设计了两段式结构,一个用来预测整体收益以指导另一个生成最终推荐列表。

5.【Diversity 模型】最近有很多工作考虑最终推荐列表里的相关性和多样性达到平衡,如 [17~20]。

我们最近做了不少重排的工作,一定程度上推动了重排的架构革新,等公开了再发出来~

公众号后台回复【rerank】可打包下载rerank经典论文集~

引用

[1] Cao, Zhe, et al. "Learning to rank: from pairwise approach to listwise approach." Proceedings of the 24th international conference on Machine learning. 2007.

[2] Burges, Chris, et al. "Learning to rank using gradient descent." Proceedings of the 22nd international conference on Machine learning. 2005.

[3] Ai, Qingyao, et al. "Learning a deep listwise context model for ranking refinement." The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018.

[4] Pang, Liang, et al. "Setrank: Learning a permutation-invariant ranking model for information retrieval." Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.

[5] Pei, Changhua, et al. "Personalized re-ranking for recommendation." Proceedings of the 13th ACM Conference on Recommender Systems. 2019.

[6] Zhuang, Tao, Wenwu Ou, and Zhirong Wang. "Globally optimized mutual influence aware ranking in e-commerce search." arXiv preprint arXiv:1805.08524 (2018).

[7] Gong, Yu, et al. "EdgeRec: Recommender System on Edge in Mobile Taobao." Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020.

[8] Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM conference on recommender systems. 2016.

[9] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.

[10] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." arXiv preprint arXiv:1703.04247 (2017).

[11] Sahoo, Doyen, et al. "Online deep learning: Learning deep neural networks on the fly." arXiv preprint arXiv:1711.03705 (2017).

[12] Lee, Ching-Pei, and Chih-Jen Lin. "Large-scale linear ranksvm." Neural computation 26.4 (2014): 781-817.

[13] Zheng, Zhaohui, et al. "A regression framework for learning ranking functions using relative relevance judgments." Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. 2007.

[14] Burges, Christopher JC. "From ranknet to lambdarank to lambdamart: An overview." Learning 11.23-581 (2010): 81.

[15] Bello, Irwan, et al. "Seq2slate: Re-ranking and slate optimization with rnns." arXiv preprint arXiv:1810.02019 (2018).

[16] Gong, Yu, et al. "Exact-k recommendation via maximal clique optimization." Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.

[17] Chen, Laming, Guoxin Zhang, and Eric Zhou. "Fast greedy map inference for determinantal point process to improve recommendation diversity." Advances in Neural Information Processing Systems. 2018.

[18] Gelada, Carles, et al. "Deepmdp: Learning continuous latent space models for representation learning." arXiv preprint arXiv:1906.02736 (2019).

[19] Gogna, Anupriya, and Angshul Majumdar. "Balancing accuracy and diversity in recommendations using matrix completion framework." Knowledge-Based Systems 125 (2017): 83-95.

[20] Wilhelm, Mark, et al. "Practical diversified recommendations on youtube with determinantal point processes." Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.

你点的每个“在看”,我都认真当成了喜欢

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
搜索推荐是指通过算法对用户在搜索引擎中输入的关键词进行解析、分析,然后根据用户历史数据、实时数据和用户特征等多种信息,提供相关性较高的搜索结果给用户。搜索推荐的目的是向用户提供更好的搜索体验和更准确的结果。 粗排是搜索推荐算法中的一个重要环节。它主要通过对大规模数据进行预处理和初步筛选,将用户的查询与候选结果进行匹配和排序。粗排算法通过考虑词频、文本相似度、文档质量等多个因素,从所有候选结果中选出相对较好的一小部分结果作为进一步处理的对象。 精排是搜索推荐算法中的另一个关键步骤。在粗排的基础上,精排算法会结合更多的信息和特征来进行细致的评估和排序。精排算法一般会考虑用户的历史点击行为、浏览时长、用户画像等信息,以及其他一些搜索质量评价指标,如PageRank,以对候选结果进行重新排序,使得最终呈现给用户的搜索结果更加符合用户的需求和偏好。 Rerank是搜索推荐算法中的重要环节之一。当用户已经进行了搜索并得到了一部分搜索结果后,rerank算法会根据用户的反馈和行为动态地对这些搜索结果进行重新排序。用户在浏览搜索结果时的点击、滑动和停留时间等行为会被记录和分析,然后根据这些用户反馈信息对搜索结果进行优化和调整,以提供更符合用户需求的搜索体验。 综上所述,搜索推荐通过粗排、精排和rerank算法,对用户输入的关键词进行解析分析,通过预处理、筛选、排序等方式提供更准确合适的搜索结果,以提升用户体验和搜索效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值