【Python深度学习系列】网格搜索神经网络超参数:批量大小和迭代周期数(案例+源码)

这是我的第297篇原创文章。

一、引言

图片

      在深度学习中,超参数是指在训练模型时需要手动设置的参数,它们通常不能通过训练数据自动学习得到。超参数的选择对于模型的性能至关重要,因此在进行深度学习实验时,超参数调优通常是一个重要的步骤。常见的超参数包括:

      一般来说,可以通过手动调优、网格搜索(Grid Search)、随机搜索(Random Search)、自动调参算法方式进行超参数调优在深度学习中,Epoch(周期)和 Batch Size(批大小)是训练神经网络时经常使用的两个重要的超参数。

  • Epoch(周期):一个Epoch就是将所有训练样本训练一次的过程。然而,当一个Epoch的样本(也就是所有的训练样本)数量可能太过庞大(对于计算机而言),就需要把它分成多个小块,也就是就是分成多个Batch 来进行训练。

  • Batch(批 / 一批样本):将整个训练样本分成若干个Batch。

  • Batch_Size(批大小):每批样本的大小。即1次迭代所使用的样本量。

  • Iteration(一次迭代):训练一个Batch就是一次Iteration(这个概念跟程序语言中的迭代器相似)每次迭代更新1次网络结构的参数

  • step(一步):训练一个样本就是一个step。

       比如我有1000个训练样本,bachsize设置为10,则数据分成了100个batch,所有训练样本训练一次即一个epoch需要100个iteration,训练一个batch就是一次iteration。本文采用网格搜索选择Epoch和Batch_size。

二、实现过程

2.1 准备数据

dataset:

dataset = pd.read_csv("data.csv", header=None)
dataset = pd.DataFrame(dataset)
print(dataset)

图片

2.2 数据划分

# 切分数据为输入 X 和输出 Y
X = dataset.iloc[:,0:8]
Y = dataset.iloc[:,8]
# 为了复现,设置随机种子
seed = 7
np.random.seed(seed)
random.set_seed(seed)

2.3 创建模型

需要定义个网格的架构函数create_model,create_model里面的参数要在KerasClassifier这个对象里面存在而且参数名要一致。

def create_model():
    # 创建模型
    model = Sequential()
    model.add(Dense(50, input_shape=(8, ), kernel_initializer='uniform', activation='relu'))
    model.add(Dropout(0.05))
    model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))

    # 编译模型
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
model = KerasClassifier(model=create_model)

这里使用了scikeras库的KerasClassifier类来定义一个分类器,这里由于KerasClassifier有批量大小、迭代次数的参数,不需要自定义表示。

2.4 定义网格搜索参数

param_grid = {'batch_size': [20, 40], 'epochs': [10, 50]}

param_grid是一个字典,key是超参数名称,这里的名称必须要在KerasClassifier这个对象里面存在而且参数名要一致。value是key可取的值,也就是要尝试的方案。

2.5 进行参数搜索

from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(estimator=model,  param_grid=param_grid)
grid_result = grid.fit(X, Y)

使用sklearn里面的GridSearchCV类进行参数搜索,传入模型和网格参数。

2.6 总结搜索结果

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print("%f (%f) with: %r" % (mean, stdev, param))

结果:

图片

经过网格搜索,批量大小的最优选择是20,迭代次数最优选择是50。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值