Python BaseModel和dataclass用法和区别

本文介绍了Pydantic库中的BaseModel,一个用于定义数据模型并进行类型检查、数据转换和验证的基础类。对比了Pydantic与Python数据classes在数据验证、转换和用途上的差异,强调了两者在API开发和内部代码中的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pydantic 的 BaseModel

Pydantic 是一个数据验证和设置管理的库,它使用 Python 类型注释来定义数据模型的结构。在 Pydantic 中,BaseModel 是所有模型的基类,提供了类型检查、数据转换和验证等功能。下面是一个简单的例子:

from pydantic import BaseModel, validator

class User(BaseModel):
    id: int
    name: str
    age: int

    # 定义一个类装饰器来校验age字段
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值