Softmax Regression损失函数的求导

softmax regression 代价函数:

J ( θ ) = − 1 m [ ∑ i = 1 m ∑ j = 1 k 1 { y ( i ) = j } l o g e θ j T X ( i ) ∑ l = 1 k e θ l T X ( i ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}\sum_{j=1}^{k}1\{y^{(i)}=j\}log \frac{e^{ {\theta_j^T}{X^{(i)}}}}{\sum_{l=1}^ke^{ {\theta_l^T}{X^{(i)}}}}\right] J(θ)=m1[i=1mj=1k1{ y(i)=j}logl=1keθlTX(i)eθjTX(i)]
其中,1{y(i)=j}表示的是当y(i)属于类别j时,1{y(i)=j}=1, 否则,1{y(i)=j}=0.


对损失函数求导:

∇ θ j J ( θ ) = − 1 m ∑ i = 1 m [ ∇ θ j ∑ j = 1 k 1 { y ( i ) = j } l o g e θ j T X ( i ) ∑ l = 1 k e θ l T X ( i ) ] = − 1 m ∑ i = 1 m [ 1 { y ( i ) = j } ⋅ ∑ l = 1 k e θ l T X ( i ) e θ j T X ( i ) ⋅ ( − e θ j T X ( i ) ⋅ X ( i ) ⋅ e θ j T X ( i ) ( ∑ l = 1 k e θ l T X ( i ) ) 2 + e θ j T X ( i ) ⋅ X ( i ) ∑ l = 1 k e θ l T X ( i ) ) ] = − 1 m ∑ i = 1 m [ 1 { y ( i ) = j } ⋅ ∑ l = 1 k e θ l T X ( i ) − e θ j T X ( i

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值