
Liu J, Ke W, Wang P, et al. Fast and continual knowledge graph embedding via incremental lora[J]. arXiv preprint arXiv:2407.05705, 2024.
引用量:10
图1:CKGE的IncLoRA示意图。上面是随着故事情节的展开,关于哈利波特的KG不断增长,下面是每个快照中具有增量LoRAs的KGE模型。
3 Methodology
3.1 Preliminary and Problem Statement
Growing Knowledge Graph.
增长的知识图谱(KG)表示为快照序列,即G = {S0, S1,…, Sn}。快照Si是一个三元组(Ei, Ri, Ti),其中Ei, Ri和Ti分别表示时间i的实体、关系和三元组的集合。此外,我们将∆Ti = Ti−Ti−1、∆Ei = Ei−Ei−1和∆Ri = Ri−Ri−1分别表示为新的三元组、实体和关系。
Continual Knowledge Graph Embedding.
持续知识图谱嵌入(CKGE)旨在将实体和关系嵌入到不断增长的知识图谱G = {S0, S1,…, Sn}。具体来说,当时间i中出现新的三元组∆Ti时,CKGE学习新实体∆Ei和关系∆Ri的表示,并更新旧实体Ei−1和关系Ri−1的表示,以适应∆Ti。最后得到实体Ei和关系Ri的所有表示。
3.2 Framework
FastKGE的框架如图2所示。总而言之,随着KG在每个快照中增长,利用不同KG层的增量低秩适配器(LoRAs)来学习和保存新的实体和关系。
首先,在知识图谱分层阶段,根据新实体和关系与旧图谱的距离和节点度对其进行分层;
其次,在IncLoRA学习阶段,将每层实体和关系的嵌入表示为具有自适应秩分配的增量LoRAs;
最后,在链接预测阶段,将所有新的LoRA组合到一个LoRA组中,并连接所有LoRA组和初始嵌入以进行推理。
图2:FastKGE框架概述。LoRA组i表示快照i中所有LoRA的集合。
3.3 Graph Layering
为了实现知识图谱的分离存储,并对不同层的LoRAs赋予不同的等级,将新知识按图结构分层。对于新快照i > 0中出现的新三元组∆Ti,我们首先得到新的实体∆Ei和关系∆Ri,并像图2中的阶段1所示对它们进行初始嵌入。然后,为了对快照i中的∆Ei的嵌入进行排序和划分,我们通过与旧图的距离和度中心性计算∆Ei的重要性。具体来说,我们使用广度优先搜索(BFS)算法从Si−1逐步扩展快照i中的∆Ei。然后,我们得到排序后的实体序列:
![]()
其中,对于ej, ek∈,如果j≤k, ej与旧图的距离比ek更近。为了对具有相同距离的实体进行进一步排序,我们将fdc(e)表示为e在由新的三元组∆Ti组成的新图中的度中心性,如下所示:





最低0.47元/天 解锁文章
649

被折叠的 条评论
为什么被折叠?



