TrustGeo
文章平均质量分 94
路由跳变
这个作者很懒,什么都没留下…
展开
-
TrustGeo代码理解(六)main.py中的__main__()中的一些理解
主要目的是评估模型的实际预测效果。因此,直接计算预测位置与真实位置的距离,更加直观和简单。这种评估方式能够清晰地反映出模型在实际应用中的性能。总结来说,训练时使用复杂的损失函数是为了更好地训练模型,使其在多个视角和不确定性估计上都有较好的表现;而测试时则采用更直接的误差度量方式来评估模型的实际预测效果。这样的设计有助于训练过程中模型参数的有效优化,并在测试时提供简洁明了的性能评估。原创 2024-05-27 16:17:17 · 564 阅读 · 0 评论 -
TrustGeo参文22:Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma Distributions
与正态-逆伽马分布混合的可信多模态回归 [22] Huan Ma, Zongbo Han, Changqing Zhang, Huazhu Fu, Joey Tianyi Zhou, and Qinghua Hu. 2021. Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma Distributions. Advances in Neural Information Processing Systems 34 (20原创 2024-04-09 08:00:00 · 1169 阅读 · 0 评论 -
TrustGeo参文2:Deep evidential regression(深度证据回归)补充材料
到目前为止,这是我必须审查的所有代码中唯一能运行的代码。R3: 作者真的花了很大的精力来提供可运行的代码,这是值得赞扬的。我们相信这项工作通过其广泛的适用性和可访问、易于使用的代码支持新的研究。原创 2024-04-08 15:06:06 · 870 阅读 · 0 评论 -
TrustGeo参文2:Deep evidential regression(深度证据回归)正文部分
确定性神经网络(NNs)越来越多地部署在安全关键领域,在这些领域中,校准(calibrated)、鲁棒(robust)和有效的不确定性度量()是至关重要的。在本文中,我们提出了一种新的方法来训练非贝叶斯神经网络(来估计连续目标及其相关证据(),以学习任意和认知的不确定性(。我们通过在原始高斯似然函数(上放置证据先验(,然后训练NN来推断证据分布)的超参数来实现这一点。我们在训练过程中增加先验,当预测证据与正确输出不对齐时,模型被正则化。我们的方法不依赖于推理过程中的抽样,也不依赖于分布外(原创 2024-04-08 13:41:33 · 1293 阅读 · 1 评论 -
TrustGeo代码理解(一)preprocess.py(预处理数据集并为模型运行执行IP聚类)
代码链接:https://github.com/ICDM-UESTC/TrustGeo一、导入各种模块和数据库加载数据和IP聚类,这些导入语句是为了引入在后续代码中可能会使用到的数学、随机数、数据处理等工具和库。二、原创 2023-12-16 19:06:10 · 770 阅读 · 0 评论 -
TrustGeo代码理解(五)utils.py(辅助函数,包括视图融合的代码)
代码链接:https://github.com/ICDM-UESTC/TrustGeo# 包含3个大规模的真实街道IP地理位置数据集。│ |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。│ |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。│ |── Shanghai # 收集自上海的街道级IP地理定位数据集,包括126,258个IP地址。原创 2023-12-16 19:02:10 · 1014 阅读 · 0 评论 -
TrustGeo代码理解(二)sublayers.py(layer.py的支持文件)
二、ScaledDotProductAttention类定义(NN模型)代码链接:https://github.com/ICDM-UESTC/TrustGeo# 包含3个大规模的真实街道IP地理位置数据集。│ |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。│ |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。原创 2023-12-16 18:59:30 · 824 阅读 · 0 评论 -
TrustGeo代码理解(三)layers.py(注意力机制的代码)
这是一个简单的注意力机制模块,用于计算注意力分数并将其应用于值(value)向量。该部分实现与RIPGeo中(三、SimpleAttention2类定义(NN模型)基本)一致RIPGeo代码理解(三)layers.py(注意力机制的代码)-CSDN博客'''q:[N1, d]k:[N2, d]v:[N2, d]'''这是一个简单的自注意力模块,实现了两个输入序列的注意力计算。这个模块的整体功能是接受三个输入张量qk和v,然后计算注意力权重,最后生成加权和的输出。原创 2023-12-16 18:24:28 · 1064 阅读 · 0 评论 -
TrustGeo代码理解(四)model.py( TrustGeo的核心源代码)
TrustGeo""":return:"""'''star-GNN''''''predict'''这是一个 PyTorch 中神经网络模型的类定义,它继承自nn.Module类,表明这个类是一个 PyTorch 模型。该块代码与RIPGeo部分一致RIPGeo代码理解(四)model.py( RIPGeo的核心源代码)-CSDN博客evidence。原创 2023-12-16 17:28:41 · 663 阅读 · 0 评论 -
TrustGeo代码理解(七)test.py(加载检查点,然后测试)
代码链接:https://github.com/ICDM-UESTC/TrustGeo# 包含3个大规模的真实街道IP地理位置数据集。│ |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。│ |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。│ |── Shanghai # 收集自上海的街道级IP地理定位数据集,包括126,258个IP地址。原创 2023-12-13 21:56:19 · 859 阅读 · 0 评论 -
TrustGeo代码理解(六)main.py(运行模型进行训练和测试)
代码链接:# 包含3个大规模的真实街道IP地理位置数据集。│ |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。│ |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。│ |── Shanghai # 收集自上海的街道级IP地理定位数据集,包括126,258个IP地址。# 包含模型(model)实现文件。原创 2023-12-13 21:08:54 · 920 阅读 · 0 评论 -
TrustGeo框架代码构成
该存储库提供了TrustGeo框架的原始PyTorch实现。原创 2024-02-19 15:37:58 · 749 阅读 · 0 评论