TrustGeo代码理解(七)test.py(加载检查点,然后测试)

本文档主要介绍`test.py`脚本,用于加载训练好的TrustGeo模型检查点并进行测试。脚本涉及加载数据、设置超参数、模型参数、环境选择及模型测试。测试阶段,计算平均MSE和MAE,但未包含模型训练、保存检查点、性能监控等功能。
摘要由CSDN通过智能技术生成

代码链接:https://github.com/ICDM-UESTC/TrustGeo

└── TrustGeo
    ├── datasets # 包含3个大规模的真实街道IP地理位置数据集。
    │        |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。
    │        |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。
    │        |── Shanghai # 收集自上海的街道级IP地理定位数据集,包括126,258个IP地址。
    ├── lib # 包含模型(model)实现文件
    │        |── layers.py # 注意力机制的代码。
    │        |── model.py # TrustGeo的核心源代码。
    │        |── sublayers.py # layer.py的支持文件。
    │        |── utils.py # 辅助函数,包括视图融合的代码
    ├── asset # 包含运行模型时保存的检查点和日志
    │        |── log # 包含运行模型时保存的日志
    │        |── model # 包含运行模型时保存的检查点
    ├── preprocess.py # 预处理数据集并为模型运行执行IP聚类
    ├── main.py # 运行模型进行训练和测试
    ├── test.py #加载检查点,然后测试
    └── README.md

一、加载检查点(checkpoint)并进行测试

该脚本的目的是加载之前训练过的模型的检查点,并使用测试数据集进行模型的性能评估。

二、导入各种模块和数据库

import torch.nn

from lib.utils import *
import argparse
import numpy as np
import random
from lib.model import *
import copy
import pandas as pd

脚本可能会涉及读取配置、加载模型、加载测试数据、执行测试、记录结果等操作。为了更详细的解释,需要查看 lib 文件夹中的 utilsmodel 模块的具体实现。

该块实现完全一致

RIPGeo代码理解(七)test.py(加载检查点,然后测试)-CSDN博客

二、参数初始化(通过命令行参数)

parser = argparse.ArgumentParser()
# parameters of initializing
parser.add_argument('--seed', type=int, default=2022, help='manual seed')
parser.add_argument('--model_name', type=str, default='TrustGeo')
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],
                    help='which dataset to use')

这部分代码的目的是通过命令行参数设置一些初始化的参数,例如随机数种子、模型名称和数据集名称。这使得在运行脚本时可以通过命令行参数来指定这些参数的值。

该块实现完全一致

RIPGeo代码理解(七)test.py(加载检查点,然后测试)-CSDN博客

三、训练过程参数设置

# parameters of training
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--lambda1', type=float, default=7e-3)
parser.add_argument('--lr', type=float, default=5e-3)
parser.add_argument('--harved_epoch', type=int, default=5) 
parser.add_argument('--early_stop_epoch', type=int, default=50)
parser.add_argument('--saved_epoch', type=int, default=200) 
parser.add_argument('--load_epoch', type=int, default=5) 

这部分代码的目的是设置一些训练过程中的超参数,例如优化器的动量参数、学习率、权重参数等。这些参数在训练过程中会影响模型的更新和收敛速度。

该块实现部分一致

RIPGeo代码理解(七)test.py(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值