代码链接:https://github.com/ICDM-UESTC/TrustGeo
└── TrustGeo
├── datasets # 包含3个大规模的真实街道IP地理位置数据集。
│ |── New_York # 从纽约市收集的街道级IP地理定位数据集,包括91,808个IP地址。
│ |── Los_Angeles # 从洛杉矶收集的街道级IP地理定位数据集,包括92,804个IP地址。
│ |── Shanghai # 收集自上海的街道级IP地理定位数据集,包括126,258个IP地址。
├── lib # 包含模型(model)实现文件
│ |── layers.py # 注意力机制的代码。
│ |── model.py # TrustGeo的核心源代码。
│ |── sublayers.py # layer.py的支持文件。
│ |── utils.py # 辅助函数,包括视图融合的代码
├── asset # 包含运行模型时保存的检查点和日志
│ |── log # 包含运行模型时保存的日志
│ |── model # 包含运行模型时保存的检查点
├── preprocess.py # 预处理数据集并为模型运行执行IP聚类
├── main.py # 运行模型进行训练和测试
├── test.py #加载检查点,然后测试
└── README.md
一、加载检查点(checkpoint)并进行测试
该脚本的目的是加载之前训练过的模型的检查点,并使用测试数据集进行模型的性能评估。
二、导入各种模块和数据库
import torch.nn
from lib.utils import *
import argparse
import numpy as np
import random
from lib.model import *
import copy
import pandas as pd
脚本可能会涉及读取配置、加载模型、加载测试数据、执行测试、记录结果等操作。为了更详细的解释,需要查看 lib
文件夹中的 utils
和 model
模块的具体实现。
该块实现完全一致
RIPGeo代码理解(七)test.py(加载检查点,然后测试)-CSDN博客
二、参数初始化(通过命令行参数)
parser = argparse.ArgumentParser()
# parameters of initializing
parser.add_argument('--seed', type=int, default=2022, help='manual seed')
parser.add_argument('--model_name', type=str, default='TrustGeo')
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],
help='which dataset to use')
这部分代码的目的是通过命令行参数设置一些初始化的参数,例如随机数种子、模型名称和数据集名称。这使得在运行脚本时可以通过命令行参数来指定这些参数的值。
该块实现完全一致
RIPGeo代码理解(七)test.py(加载检查点,然后测试)-CSDN博客
三、训练过程参数设置
# parameters of training
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--lambda1', type=float, default=7e-3)
parser.add_argument('--lr', type=float, default=5e-3)
parser.add_argument('--harved_epoch', type=int, default=5)
parser.add_argument('--early_stop_epoch', type=int, default=50)
parser.add_argument('--saved_epoch', type=int, default=200)
parser.add_argument('--load_epoch', type=int, default=5)
这部分代码的目的是设置一些训练过程中的超参数,例如优化器的动量参数、学习率、权重参数等。这些参数在训练过程中会影响模型的更新和收敛速度。
该块实现部分一致