代码链接:RIPGeo代码实现
├── lib # 包含模型(model)实现文件
│ |── layers.py # 注意力机制的代码。
│ |── model.py # TrustGeo的核心源代码。
│ |── sublayers.py # layer.py的支持文件。
│ |── utils.py # 辅助函数。
五、MaxMinLogRTTScaler()类定义
class MaxMinLogRTTScaler():
def __init__(self):
self.min = 0.
self.max = 1.
def transform(self, data):
data_o = np.array(data)
data_o = np.log(data_o + 1)
return (data_o - self.min) / (self.max - self.min)
这是一个最大最小归一化和对数变换的类,用于对输入数据进行预处理。这个类的实例可以用于对RTT(Round-Trip Time)等数据进行预处理,使其适用于某些需要输入在固定范围内的模型。
分为几个部分展开描述:
(一)__init__()
def __init__(self):
self.min = 0.
self.max = 1.
这是一个简单的类的初始化方法 __init__
,主要功能是为类的实例对象设置初始属性值。
1、self.min = 0.
: 创建一个实例变量 min
并将其设置为 0.,这里 0.
表示浮点型的零。
2、self.max = 1.
: 创建一个实例变量 max
并将其设置为 1.,同样是浮点型的一。。
(二)transform()
def transform(self, data):
data_o = np.array(data)
data_o = np.log(data_o + 1)
return (data_o - self.min) / (self.max - self.min)
这段代码的功能是将输入的数据进行对数转换,然后进行最小-最大归一化。这样的操作常用于将数据缩放到一个较小的范围,使其更适合训练或输入到某些机器学习模型中。这种缩放方法用于将数据缩放到指定的范围,是[0, 1]。
1、data_o = np.array(data)
:将输入的data
转换为NumPy数组,并将结果存储在data_o
中。
2、data_o = np.log(data_o + 1)
:对data_o
中的每个元素取对数,这里使用的是自然对数(以e为底)。+ 1
是为了避免对0取对数。
3、return (data_o - self.min) / (self.max - self.min)
:对处理后的数据进行归一化操作。self.min
和self.max
是归一化的范围,这两个值可能是预先计算得到的或者是通过其他方式确定的。这里使用的是最小-最大归一化方法,即减去最小值然后除以范围(最大值减最小值)。最终,函数返回归一化后的结果。
六、MaxMinRTTScaler()类定义
class MaxMinRTTScaler():
def __init__(self):
self.min = 0.
self.max = 1.
def transform(self, data):
data_o = np.array(data)
# data_o = np.log(data_o + 1)
return (data_o - self.min) / (self.max - self.min)
这是一个用于进行最大-最小缩放(Max-Min Scaling)的类。这种缩放方法用于将数据缩放到指定的范围,通常是[0, 1]。
相比于第五部分(MaxMinLogRTTScaler类定义),缺少对数化操作,其他的一样。
七、MaxMinLogScaler()类定义
class MaxMinLogScaler():
def __init__(self):
self.min = 0.
self.max = 1.
def transform(self, data):
data[data != 0] = -np.log(data[data != 0] + 1)
max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min
data[data != 0] = (data[data != 0] - min) / (max - min)
return data
def inverse_transform(self, data):
max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min
data = data * (max - min) + min
return np.exp(data)
这是一个实现最大最小对数缩放(Max-Min Log Scaling)的类,主要用于处理数据的缩放和反缩放。该类的目的是确保数据在缩放和反缩放时能够得到合适的转换,避免由于极端值或零值导致的不稳定情况。
分为几个部分展开描述:
(一)__init__()
def __init__(self):
self.min = 0.
self.max = 1.
初始化方法,设置缩放的最小值和最大值,默认为 0 和 1。
(二)transform()
def transform(self, data):
data[data != 0] = -np.log(data[data != 0] + 1)
max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min
data[data != 0] = (data[data != 0] - min) / (max - min)
return data
数据缩放方法。对于输入的数据 data
,首先对非零元素取对数,然后进行最大最小缩放,将数据映射到 [0, 1] 的范围内。
1、data[data != 0] = -np.log(data[data != 0] + 1)
:对数据中非零元素取对数的操作。首先,data != 0
会生成一个布尔掩码,表示数据中非零的位置。然后,对这些非零的元素执行 -np.log(data[data != 0] + 1)
,将其取对数并取负值,最终将结果赋值给原数据中非零的位置。这个操作通常用于对数据进行对数缩放,可以使原始数据中的大数值范围缩小,便于模型训练。
2、max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
:将 self.max
转换为与输入数据 data
类型一致的张量,并移动到与输入数据相同的设备(GPU 或 CPU)。这里做了类型和设备的匹配以确保后续的操作在相同的环境下进行。
3、min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min
:将 self.min
转换为与输入数据 data
类型一致的张量,并移动到与输入数据相同的设备。
4、data[data != 0] = (data[data != 0] - min) / (max - min)
:对数据中非零元素进行归一化操作。首先,data[data != 0]
会获取数据中非零元素的数组。然后,对这些非零元素执行归一化操作,减去最小值 min
并除以范围 (max - min)
。最终,将归一化后的值赋值给原数据中非零的位置。
(三)inverse_transform()
def inverse_transform(self, data):
max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min
data = data * (max - min) + min
return np.exp(data)
这段代码实现了一个反向变换(inverse transform)的函数,主要用于将经过某种归一化处理的数据反向还原到原始数据的范围。目的是将经过某种归一化处理的数据还原到原始的数值范围,以便进行后续的分析或应用。
1、max = torch.from_numpy(self.max).type_as(data).to(data.device) if torch.is_tensor(data) else self.max
:将保存的最大值 self.max
转换为PyTorch张量,并确保其与输入数据 data
的数据类型一致。如果 data
是PyTorch张量,将张量移动到与 data
相同的设备(device)上。
2、min = torch.from_numpy(self.min).type_as(data).to(data.device) if torch.is_tensor(data) else self.min