Review of deep learning: concepts, CNN architectures, challenges, applications, future directions(一)

Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of big Data, 2021, 8: 1-74.

引用量:4496

一、Abstract

在过去的几年里,深度学习(DL)计算范式一直被认为是机器学习(ML)社区的黄金标准。此外,它已经逐渐成为ML领域中应用最广泛的计算方法,从而在一些复杂的认知任务中取得突出的结果,匹配甚至击败人类表现所提供的结果。DL的好处之一是能够学习大量的数据。DL 领域在过去的几年中发展迅速,并被广泛地用于成功地解决了广泛的传统应用。更重要的是,DL在许多领域都优于著名的ML技术,如网络安全、自然语言处理、生物信息学、机器人技术和控制,以及医学信息处理等。尽管已经引用了一些关于DL的最先进的作品,但它们都只涉及了DL的一个方面,这导致了对它的整体缺乏知识。因此,在这篇文章中,我们建议使用一个更全面的方法,以提供一个更合适的起点,以发展对DL的全面理解。特别地,本综述试图对DL最重要的方面提供一个更全面的调查,并包括那些最近添加到领域中的增强。本文特别概述了DL的重要性,介绍了DL技术和网络的类型。然后介绍了最常用的DL网络类型的卷积神经网络(CNNs),并描述了CNNs架构的发展及其主要特征,例如,从AlexNet网络开始,关闭到高分辨率网络(HR.Net)。最后,我们进一步提出了挑战和建议的解决方案,以帮助研究者理解现有的研究差距。它后面是一个主要的DL应用程序的列表。本文总结了一些计算工具,包括FPGA、GPU和CPU,并总结了它们在DL上的注入情况。最后以评价标准、基准数据集进行总结和结论。

Keywords:深度学习(Deep learning)、机器学习(Machine learning)、卷积神经网络(CNN)、深度神经网络架构(Deep neural network architectures)、深度学习应用(Deep learning applications)、图像分类(Image classifcation)、迁移学习(Transfer learning)、医学图像分析(Medical image analysis)、监督学习(Supervised learning)、FPGA、GPU

二、Introduction

近年来,机器学习(ML)在研究中已经非常广泛,并已被纳入各种应用,包括文本挖掘、垃圾邮件检测、视频推荐、图像分类和多媒体概念检索[1–6]。在不同的ML算法中,深度学习(DL)在这些应用[7–9]中非常常用。DL的另一个名称是表示学习(RL)。在深度和分布式学习领域,新研究的持续出现是由于获取数据的能力的不可预测的增长,以及在硬件技术方面取得的惊人进步,如高性能计算(HPC)[10]

DL是由传统的神经网络衍生而来的,但其性能明显优于它以前的神经网络。此外,DL同时采用转换和图形技术,以建立多层学习模型。最近开发的DL技术在各种应用中都获得了良好的出色性能,包括音频和语音处理、视觉数据处理、自然语言处理(NLP),以及其他[11–14]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值