引用次数:9
引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.
摘要
讲述了一种新的图神经网络(Graph Neural Network,GNN)训练框架,称为Cooperative Graph Neural Networks (CO-GNNs)。
GNN是一种在图上进行机器学习的架构,通过一系列不变变换对输入图的节点表示进行迭代计算。(这句话介绍了图神经网络的基本概念。)一大类图神经网络遵循标准的消息传递范式:在每一层,每个节点状态都基于来自其邻居的消息的聚合进行更新。(这句话指出了现有的GNN模型通常采用的消息传递机制。)在这项工作中,我们提出了一种新的GNN训练框架,将每个节点视为一个参与者(玩家player),可以选择“接收信息(listen)”、“广播信息(broadcast)”、“接收并广播(listen and broadcast)”或“隔离(isolate)”。(这里提出了论文的核心创新)标准的消息传播方案可以被视为该框架的一种特殊情况,其中每个节点都向所有邻居“侦听和广播”。(这句话解释了传统的消息传递方式是该新框架的一个特例)我们的方法提供了一种更灵活和动态的消息传递机制,每个节点可以根据自己的状态决定策略,从而在学习过程中有效地探索图的拓扑结构。(这里介绍了新方法的优势)论文不仅提供了新消息传递机制的理论分析,还通过大量的实验验证了该机制的有效性,包括在合成数据和真实世界数据上的实证分析。
总结来说,论文提出了一种名为CO-GNN的图神经网络架构,改进了传统的消息传递方式,允许节点在不同状态下选择不同的传递策略,从而更好地探索图的结构,提升学习效果。
1、Introduction
图神经网络(Scarselli et al., 2009; Gori et al., 2005) 是一类用于图结构数据学习的架构。(介绍GNN的定义)提到GNN在多种图机器学习任务(Shlomi et al., 2021; Duvenaud et al., 2015; Zitnik et al., 2018)中的成功,带动了许多不同架构的产生(Kipf & Welling, 2017; Xu et al., 2019; Veličković et al., 2018; Hamilton et al., 2017)。强调GNN的大多数实现是通过消息传递,其中的基本思想是通过邻居节点传递的信息来更新每个节点的表示(Gilmer et al., 2017)。
解释消息传递模式在图机器学习中的影响,但同时指出了它在处理长距离依赖时的局限性 (Dwivedi et al., 2022)。描述了在处理k跳(k-hop)邻居时,网络需要至少k层(k layers),这导致了节点感受野的指数增长。信息量的增加需要被压缩到固定大小的节点嵌入中,可能导致信息丢失,即“过度压缩(over-squashing)”问题(Alon & Yahav, 2021)。 另外一个常见的局限是“过平滑(over-smoothing)”问题(Li et al., 2018):随着层数的增加,节点特征变得越来越相似。
Motivation.
论文的动机是为了推广消息传递机制,使每个节点可以决定如何与邻居传播信息,从而实现更灵活的信息流动。这解决了传统消息传递机制的局限性。(动机陈述)考虑图1中描述的示例,其中顶部一行显示了三层中相对于节点u的信息流,下面一行显示了三层中相对于节点v的信息流。(通过具体的例子(图1)来解释)节点u在第一层接收所有邻居的信息,第二层只接收v的信息,而在最后一层只接收s和r的信息。节点v在前两层接收w的信息,最后一层接收u的信息。通过这样的不同信息传递策略,实现灵活的信息流动。为实现这种灵活机制,每个节点应该在每一层决定是否接收来自某个邻居的信息。这种动态、异步的消息传递机制(dynamic and asynchronous message-passing scheme)突破了传统的同步、固定的消息传递方式。
图1:节点u、v的信息流示例。顶部:跨三层的相对于u的信息流。节点u只听(listen)第一层的每个邻居,但只听第二层的v,只听最后一层的s和r。底部:跨三个层的相对于v的信息流。节点v只听前两层的w,而只听最后一层的u。
通过上述动机分析,论文引出了设计更加灵活的信息传递机制的必要性,意在提升图神经网络的信息流动效率,特别是在多层传递过程中。