【Eviews】第九周实验-二次/对数拟合、预测

实验一

在这里插入图片描述


第一问

data price建立变量,复制粘贴导入数据后,view-选择图即可

第二问

在这里插入图片描述
(1)使用二次函数进行估计,拟合

执行以下命令

genr time=@trend+1
genr time2=time*time
ls price=c(1)*time^2+c(2)*time+c(3)

可以看到,下图拟合度是0.89
在这里插入图片描述
在上面的输出结果中,选择如下:
在这里插入图片描述
绘制出拟合图如下,红色为原有数据,绿色为拟合曲线,蓝色为残差

<think>好的,我现在需要在EViews 6中进行二次曲线拟合回归分析。首先,我需要确认什么是二次多项式回归。二次回归的模型应该是形如$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$,对吧?所以目标变量y和自变量x以及x的平方项有关。 接下来,我需要回忆EViews的操作步骤。根据之前使用EViews的经验,通常回归分析是在Equation对象中进行的。但如何生成x的平方项呢?可能需要先在EViews中创建一个新的序列,比如生成x²。或者有没有更快捷的方法,比如在方程设定中直接写x的平方? 假设用户的数据已经导入到EViews的工作文件中,包含变量y和x。首先,可能需要检查数据是否有缺失值,因为如果有缺失值的话,回归结果可能不准确。根据引用[3]提到的,EViews处理缺失数据可以用多项式插值,比如拉格朗日插值或牛顿插值,但这里的问题是关于回归拟合,所以可能需要先处理缺失值,或者确保数据完整。 接下来,具体操作步骤可能是这样的: 1. 打开EViews 6,载入包含y和x数据的工作文件。 2. 生成x的平方项。这可以通过在命令窗口输入命令,比如genr x_sq = x^2,或者在菜单里操作。 3. 然后进入方程设定界面,输入回归方程的形式。比如输入y c x x_sq,其中c代表常数项,x和x_sq是自变量。 4. 执行回归分析,查看结果,包括系数估计、显著性检验等。 或者可能在方程设定中直接使用公式表达式,比如输入y = c(1) + c(2)*x + c(3)*x^2,这样EViews会自动处理生成平方项? 另外,需要注意变量是否存在多重共线性,因为x和x²可能存在较高的相关性,但二次项通常是允许的,因为这是模型的一部分。不过可能需要检查模型的VIF值或者其他指标,但EViews是否支持这些需要确认。 此外,用户可能还需要进行模型诊断,比如残差分析,判断二次项是否合适,或者是否存在异方差等问题。这可能涉及到查看残差图或者进行相关的检验,比如White检验。 可能用户还会关心如何解读二次项的系数,比如开口方向、极值点的位置等。这些在结果分析时需要解释清楚。 现在,我需要验证这些步骤是否正确。比如,生成平方项是否可以通过genr命令,方程设定是否支持直接写x^2。根据EViews的语法,可能在方程设定时可以直接用x^2,而不必先生成新的序列。例如,在方程设定窗口的specification标签下,输入y c x x^2。不过需要测试是否正确,或者是否需要括号。比如可能写成x^2会被识别为变量的平方,或者是否需要使用括号如(x)^2。 如果直接输入y c x x^2有效的话,那步骤会更简单。否则需要先创建x_sq序列。 另外,关于引用的问题,用户提供的引用中有引用[3]提到EViews处理缺失值的方法,比如多项式插值。如果在回归前数据有缺失,可能需要先填补,这时候可以用到这些方法,但用户的问题可能假设数据已经是完整的,或者需要先处理缺失值。所以在回答中可能需要提醒用户检查数据完整性,必要时进行插值处理,引用[3]的方法。 总结步骤: 1. 确保数据完整,处理缺失值(如有需要,使用引用[3]的方法)。 2. 生成二次项变量或直接在回归方程中包含x²。 3. 执行回归分析,检查结果。 4. 进行模型诊断和解释。 现在需要将这些步骤用中文清晰地写出,并符合格式要求,比如行内公式用$...$,独立公式用$$...$$,正确使用LaTeX,生成相关问题等。</think>在EViews 6中进行二次多项式回归拟合的步骤如下: --- ### 步骤说明 1. **数据准备** 确保工作文件中已包含因变量$y$和自变量$x$的序列。若存在缺失值,可通过多项式插值(如拉格朗日插值)填补[^3]。 在命令窗口输入以下命令生成平方项: ```genr x_sq = x^2``` 2. **设定回归方程** 打开方程设定界面(`Quick` → `Estimate Equation`),输入模型公式: ```y c x x_sq``` 或直接使用公式表达式: ```y = c(1) + c(2)*x + c(3)*x^2``` 其中,`c`为常数项,`x`和`x_sq`分别对应一次项和二次项。 3. **执行回归分析** 点击`OK`运行回归,结果将显示系数估计值($\beta_0, \beta_1, \beta_2$)、$t$检验、$R^2$等统计量。 4. **模型诊断与解释** - 检查二次项系数$\beta_2$的显著性($p$值),若显著则说明二次关系存在。 - 通过残差图分析模型假设(如异方差性),必要时使用稳健标准误。 - 计算极值点位置:若二次项系数为负,曲线开口向下,极值点$x^* = -\beta_1/(2\beta_2)$。 --- ### 示例输出 回归结果形式如下: $$ y = 2.5 + 1.3x - 0.4x^2 \quad (R^2=0.89) $$ 表示二次曲线开口向下,极值点位于$x=1.625$。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值