题目1
给定一个有正、有负、有0的数组arr,
给定一个整数k,
返回arr的子集是否能累加出k
1)正常怎么做?
2)如果arr中的数值很大,但是arr的长度不大,怎么做?
问题 1)思路
如果数组中只有正数,那么这就是一个普通的背包问题,
递归函数用 process(i,j) 表示从0到i随便选,能否选出累加和为j的数字。
在 process 内部,可以选i,或者不选i。
- 如果不选 i,就看 process(i-1, j) 是否返回 true
- 如果选 i,就看 process(i-1, j-arr[i]) 是否返回 true
将递归转换成 dp,就是dp[i][j]
表示从0到i随便选,能否选出累加和为j的数字。
dp 表的难点在于,数组中有负数,需要将下标做一个平移。
问题 2)思路
我的思路是,当 arr 数值很大的时候,可以用 暴力递归 + HashMap 来做缓存表,这样只需要计算那些用得到的结果,而不需要写满整个 arr 数据范围的结果。
左神的思路是,假设 arr 的长度是 40,用分治,左边 20 个数用暴力算出所有可能的累加和(2^20=1048576),右边也得到 1048576 个结果。(一般都是二分之后再整合,你要分成三部分也可以,但整合的时候就会复杂一些)
如果单独用左部分,或者单独用右部分,就能够得到目标累加和的话,直接返回就可以了。如果不行,要考虑左右合并的情况。
题目2
给定一个正数数组arr,
返回arr的子集“不能累加出的“最小正数
1)正常怎么做?
2)如果arr中肯定有1这个值,怎么做?
问题 1)思路
和题目 1 很像,而且所有的数都是正数,可以看成是一个普通的背包问题。
process(i,j) 表示从0到i随便选,能否选出累加和为j的数字。
在 process 内部,可以选i,或者不选i。
- 如果不选 i,就看 process(i-1, j) 是否返回 true
- 如果选 i,就看 process(i-1, j-arr[i]) 是否返回 true
最后从 j=1 开始 j++,一直找到第一个 process(i, j) 返回为 false 的 j,就是最终结果。
问题 2)思路
其实 问题1)的最优思路就是,如果没有 1,则返回答案 1。如果有 1,则用下面的思路。
先排序,排序后,左边第 0 位置一定是 1。
定义变量 range=1,含义为,从 1-range 范围上的正数都能累加出来。下面我们来分析 range 的扩充条件:
如果 1 位置的数还是 1,则 range 变成 2。
如果 2 位置的数是 2,则 range 变成 4。
普遍的,我来到 i 位置发现 arr[i]=17,range=100,代表从 0 到 i-1 位置能够得到 1~100 里的所有数,由此可以推断,加上 i 位置之后,可以得到 1~117 所有的数。
普遍的,我来到 i 位置发现 arr[i]=101,range=100,代表从 0 到 i-1 位置能够得到 1~100 里的所有数,由此可以推断,加上 i 位置之后,可以得到 1~201 所有的数。
但,普遍的,我来到 i 位置发现 arr[i]=102,range=100,代表从 0 到 i-1 位置能够得到 1~100 里的所有数,但以后怎么也得不到 101 了。
所以,range 扩充的条件是:
- 如果 arr[i] > range+1,那么以后就再也得不到 range+1 的累加和了,直接返回 range+1
- 否则,range 可以扩充为 range + arr[i]
题目3
Leetcode原题:
https://leetcode.com/problems/patching-array/
思路
我们先举一个极端的例子,假设 nums 为空,n=1000,我们想要生成从 1~1000 之间所有的数。
思路和题目2很像。用 range 表示当前能够得到的最大累加和。
首先我肯定需要 1,这样就能得到 [1,1] 区间所有的数,range = 1。
然后我需要 2,就可以得到 [1, 1+2] 区间所有的数,range = 3。
然后我需要 4,就可以得到 [1, 3+4] 区间所有的数,range = 7。
然后我需要 8,…
然后,我们忘掉前面的例子,举一个普遍的例子。
假设 nums=[4, 5, 17, 39],n=83
首先我们来看 nums 中的第一个数字 4,我们要先能够得到 4 之前所有的数字,所以根据前面的分析,需要加入 1,2,得到 range=7
在此基础上,来到 nums 中的第二个数字 5,更新range为 7+5=12
在此基础上,来到 nums 中的第三个数字 17,不能直接更新 range,需要想办法得到 13 14 15 16。所以需要加入 range+1 = 13,并且更新 range 为 12+13=25。然后用 17 更新 range=25+17=42
在此基础上,来到 nums 中的第四个数字39,更新range为42+39=81
整个数组遍历结束了,而最终目标83还有距离,所以需要再补一个range+1=82,就能得到1~83范围内所有的数字。
题目4
给定整数power,给定一个数组arr,给定一个数组reverse,含义如下:
arr的长度一定是2的power次方
reverse中的每个值一定都在0~power范围。
例如power = 2, arr = {3, 1, 4, 2},reverse = {0, 1, 0, 2}
任何一个在前的数字可以和任何一个在后的数组,构成一对数
可能是升序关系、相等关系或者降序关系
比如arr开始时有如下的降序对:(3,1)、(3,2)、(4,2),一共3个
接下来根据reverse对arr进行调整:
reverse[0] = 0, 表示在arr中,划分每1(2的0次方)个数一组,然后每个小组内部逆序,那么arr变成[3,1,4,2],此时有3个逆序对
reverse[1] = 1, 表示在arr中,划分每2(2的1次方)个数一组,然后每个小组内部逆序,那么arr变成[1,3,2,4],此时有1个逆序对
reverse[2] = 0, 表示在arr中,划分每1(2的0次方)个数一组,然后每个小组内部逆序,那么arr变成[1,3,2,4],此时有1个逆序对
reverse[3] = 2, 表示在arr中,划分每4(2的2次方)个数一组,然后每个小组内部逆序,那么arr变成[4,2,3,1],此时有4个逆序对
所以返回[3,1,1,4],表示每次调整之后的逆序对数量
输入数据状况:
power的范围[0,20]
arr长度范围[1,10的7次方]
reverse长度范围[1,10的6次方]
思路
假设我们有 8 个数,arr = [2 1 7 5 3 4 6 8]
当以 2 个数为一组的时候,我们假设每个组内逆序对的个数之和是 a,正序对个数之和是 b
注意,每一个组内的逆序对,第一个数要来自组内左侧,第二个数要来自组内右侧。
这样,在每个组中逆序对相加,求总的逆序对数量的时候,才不会重复计算。
2个一组的时候,[2 | 1] [7 | 5] [3 | 4] [6 | 8]
其中,正序对包括 (3,4),(6,8),正序对个数为2.
其中,逆序对包括 (2,1),(7,5),逆序对个数为2.
4个一组的时候,[2 1 | 7 5][3 4 | 6 8]
其中,正序对包括 (2,7),(2,5),(1,7),(1,5),(3,6),(3,8),(4,6),(4,8),正序对个数为8.
其中,逆序对没有,逆序对个数为0
8个一组的时候,[2 1 7 5 | 3 4 6 8]
其中,正序对包括 (2,3),(2,4),(2,6),(2,8),(1,3),(1,4),(1,6),(1,8),(7,8),(5,6),(5,8),正序对个数为11.
其中,逆序对包括 (7,3),(7,4),(7,6),(5,3),(5,4),逆序对个数为5
同样的,我们假设 4(2的2次方)个一组的时候,逆序对的个数为 c,正序对个数之和是 d.
同样的,我们假设 8(2的3次方)个一组的时候,逆序对的个数为 e,正序对个数之和是 f.
我们把上面的假设总结成表格:
几个数一组 | 逆序对的个数 | 正序对的个数 |
---|---|---|
2(2的1次方) | a | b |
4(2的2次方) | c | d |
8(2的3次方) | e | f |
当我们将“ 4(2的2次方)个数字组成的小组”内部逆序的时候,它只影响“2(2的1次方)个数字一组”的小组,和“4(2的2次方)个数字一组的小组”,不会影响“8(2的3次方)一组的小组”。逆序后,表格变成如下:
几个数一组 | 逆序对的个数 | 正序对的个数 |
---|---|---|
2(2的1次方) | b(左右交换) | a(左右交换) |
4(2的2次方) | d(左右交换) | c(左右交换) |
8(2的3次方) | e(不变) | f(不变) |
普遍的,当我们要逆序“2的n次方个数字组成的小组”的时候,表格中,“2的n次方一组的小组”这一行下面的所有小组,都不会被影响。这一行上面的所有小组(包括自身),正序对个数和逆序对个数发生交换。
这样,每一次组内做逆序的时候,就可以非常快速的计算逆序之后的逆序对数量。
那么,怎么拥有一开始的表格信息?用归并排序来算。去看体系学习班第4节和第5节,是和merge sort有关的题目。
题目5
约瑟夫环问题
给定一个链表头节点head,和一个正数m
从头开始,每次数到m就杀死当前节点
然后被杀节点的下一个节点从1开始重新数,
周而复始直到只剩一个节点,返回最后的节点
Leetcode :
https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/