春节期间小明使用微信收到很多个红包,非常开心。在查看领取红包记录时发现,某个红包金额出现的次数超过了红包总数的一半。请帮小明找到该红包金额。写出具体算法思路和代码实现,要求算法尽可能高效。
给定一个红包的金额数组gifts及它的大小n,请返回所求红包的金额。
若没有金额超过总数的一半,返回0。
测试样例:
[1,2,3,2,2],5
返回:2
其实就是求超过数组一半的元素问题,剑指offer上有。
方法一:利用partition方法
class Gift {
public:
int getValue(vector<int> gifts, int n) {
if(n <= 0)
return -1;
int start = 0;
int end = n - 1;
int middle = (end - start) >> 1;
int index = -1;
index = partition(gifts, start, end);
while(index < middle){
if(index > middle){
end = index - 1;
index = partition(gifts, start, end);
}
else{
start = index + 1;
index = partition(gifts, start, end);
}
}
return check_more_than_half(gifts, n, gifts[middle]);
}
int partition(vector<int> gifts, int start, int end){
int small = start - 1;
for(int index=start; index<end; ++index){
if(gifts[index] < gifts[end]){
++small;
if(index != small)
std::swap(gifts[index], gifts[small]);
}
}
++small;
std::swap(gifts[small], gifts[end]);
return small;
}
int check_more_than_half(vector<int>& gifts, const int n, int val){
int cnt = 0;
for(auto i : gifts){
if(i == val)
++cnt;
}
return (cnt != 0 && cnt > (n >> 1)) ? val : 0;
}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
基于数组的partition方法是成熟的用来求第k位数的方法,在此处我们用来求的是中位数。我们求得中位数,然后判断中位数是否超过数组的一半就得出答案了。
如果求第k个数,while循环条件改为index< k-1(或Index != k-1)即可。
对于每次partition得出的index,如果index>middle,说明中位数在index左边(当前index所对的元素肯定大于中位数)。否则,中位数在index右边。当index=middle时,成功求得中位数,会跳出循环。
这个方法的时间复杂度是O(N)。
另外,千万注意partition中是start,不是0。
方法二:攻守阵地法
我们把第一个元素作为士兵,并使用一个计数变量times。遍历数组,如果出现相同元素,times++。如果出现不同元素,times–。当times减为0时,该士兵死亡。使用新的gifts[i]作为士兵,继续攻守。最后留在战场上的士兵有可能就是超过一半的数字。
最后利用check函数判断即可。
代码如下:
class Gift {
public:
int getValue(vector<int> gifts, int n) {
if(n <= 0)
return -1;
int times = 1;
int soldier = gifts[0];
for(int i=1; i<n; ++i){
if(soldier == gifts[i])
++times;
else if(soldier != gifts[i]){
if(--times == 0){
soldier = gifts[i];
times = 1;
}
}
}
return check_more_than_half(gifts, n, soldier);
}
int check_more_than_half(vector<int>& gifts, const int n, const int val){
int cnt = 0;
for(auto i : gifts){
if(i == val)
++cnt;
}
return (cnt != 0 && cnt > (n >> 1)) ? val : 0;
}
};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
该方法时间复杂度同样是O(N)。