在各行业加速智能化转型的进程中,OCR技术(即光学字符识别,一种将图像中文字转化为可编辑文本的AI技术,在文档处理、办公自动化、交通出行、教育、医疗、金融等领域应用广泛。)一直扮演着重要的角色。正所谓“金无足赤”,随着业务场景日益复杂与需求多样化,传统OCR的局限性也逐渐成为制约企业转型发展的瓶颈。
从技术层面看,传统 OCR 对复杂场景的适应能力及上下文语义理解极为有限。对于存在多样化表格、混排内容、背景干扰、模糊、多语言混合等情况的图像难以准确地识别、分离出字符区域 ,导致识别错误率升高。
在识别能力上,传统 OCR 还缺乏灵活性,难以应对多样化的输入。不同的行业存在不同格式的文档和图像,而传统 OCR 往往难以快速适应这些变化,需要进行大量的调优或模型定制,进一步增加了使用成本和时间成本。
当前,在AI大模型热潮下,OCR技术正迎来新一轮生产力效率变革。
在实际应用中,大模型加持的OCR可以更准确、灵活应对不同行业复杂多样的文档格式与版式,助力企业实现业务流程自动化升级,大幅提升运营效率与数据处理准确性。那么,鹅厂的多模态OCR大模型如今进展如何呢?
01、技术演进
| 技术演进 |
技术路线 |
解决场景 |
|---|---|---|
| OCR1.0 |
多阶段定制 OCR模型检测 + 识别 + 结构化 |
全文文字识别定制场景OCR 结构化提取 |
| OCR2.0(DocLM-Base) |
端到端OCR |

最低0.47元/天 解锁文章
2181

被折叠的 条评论
为什么被折叠?



