TensorFlow练习03-多层神经网络构造

import tensorflow as tf
import numpy as np
###定义添加神经层函数add_layer
def add_layer(inputs, in_size, out_size, activation_function = None):#输入值,输入量,输出量,激活函数默认:无
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))   #随机初始化权重
    biases = tf.add(tf.Variable(tf.zeros([1,out_size])), 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:  #默认无激活函数
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)  #调用激活函数,引入非线性因素
    return  outputs

###构造样本
x_data = np.linspace(-1, 1, 300)[:,np.newaxis]   #输入值x: 1维
noise = np.random.normal(0,0.05,x_data.shape)    #噪声,正态分布均值0,标准差0.05
y_data = np.square(x_data) - 0.5 + noise       #输出值

xs = tf.placeholder(tf.float32, [None, 1])    #None: [None, 1]:输入维数为1
ys = tf.placeholder(tf.float32, [None, 1])

inputLayer = add_layer(xs, 1, 10, activation_function = tf.nn.relu)     #输入层:输入量1,输出量10(隐含层),激活函数:relu
outputLayer = add_layer(inputLayer, 10, 1, activation_function = None)    #输出层:输入量:10(隐含层),输出量1

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-outputLayer),1)) #reduce_sum:对所有元素求和,reduction_indices[1]按行求和,最后输出行向量
                                                                            # reduction_indices[0]按列求和,输出行向量
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)                   #设定学习效率 <1
init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    for i in range(1000):
        sess.run(train_step, feed_dict={xs:x_data, ys:y_data})    #placeholder传参
        if (i % 50 == 0):
            print(sess.run(loss, feed_dict={xs:x_data, ys:y_data})) #每次调用run操作都需要placeholder传参

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值