CART分类与回归

CART分类树与回归树

前记

本篇文章不会大幅度去介绍CART是怎么来的,以及CART与其他不同的地方,但是会着重的讲解在面试过程中遇到的问题,知识点的话会简单点的温习一下,本文是按照博主学习CART的过程俩编写,本文假设读者已经知道了ID3已经C4.5算法,若写的有问题,请指出,谢谢.

1. 为什么会有CART

我们已经知道在ID3中,我们是使用信息增益去作为分类的基准的,在现场面试中,面试官曾要求我们计算信息增益,以及选择分类的基准.首先是具备以下知识:

1.1 面试题1:信息增益(information gain)

首先,我们需要熟悉信息论中熵的概念。熵度量了事物的不确定性,越不确定的事物,它的熵就越大。具体的,随机变量X的熵的表达式如下:

H ( x ) = − ∑ i = 1 n p i log ⁡ p i H(x)=-\sum _{i=1}^{n}p_i\log{p_i} H(x)=i=1npilogpi

熟悉了一个变量X的熵,很容易推广到多个个变量的联合熵,这里给出两个变量X和Y的联合熵表达式:

H ( X , Y ) = − ∑ i = 1 n P ( x i , y i ) log ⁡ ( P ( x i , y i ) ) H(X,Y)=-\sum _{i=1}^{n}P(x_i,y_i)\log(P(x_i,y_i)) H(X,Y)=i=1nP(xi,yi)log(P(xi,yi))

有了联合熵,又可以得到条件熵的表达式H(X|Y),条件熵类似于条件概率,它度量了我们的X在知道Y以后剩下的不确定性。表达式如下:

H ( Y ∣ X ) = ∑ i = 1 n P i H ( Y ∣ X = X i ) H(Y|X)=\sum_{i=1}^n P_iH(Y|X=X_i) H(YX)=i=1nPiH(YX=Xi)

有了上面的推导,我们下面给出信息增益的概念以及计算公式:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度,其定义如下:特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件D下的经验条件熵H(D|A)之差,即

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A)=H(D)-H(D|A) g(D,A)=H(D)H(DA)

有了上面的基础,那么可以开始本次的面试题了,给定特征,计算信息增益以及确定分类特征。

下面的示例是以李航博士的统计学习方法为例:
在这里插入图片描述

比如存在上面的数据集D,我们分析初始时,哪一个作为分类节点较为合适,分别以 A 1 , A 2 , A 3 , A 4 ​ A_1,A_2,A_3,A_4​ A1,A2,A3,A4表示年龄,有工作,有自己的房子和信贷情况,那么我们开始来计算每个特征的信息增益:

(1)计算D的熵:

H ( D ) = − 9 15 log ⁡ 2 9 15 − 6 15 log ⁡ 2 6 15 = 0.971 H(D)=-\frac{9}{15}\log_2\frac{9}{15}-\frac{6}{15}\log_2\frac{6}{15}=0.971 H(D)=159log2159156log2156=0.971

(2)对于特征 A 1 A_1 A1的信息增益,因为分为三类(青年:5( D 1 D_1 D1),中年:5( D 2 D_2 D2),老年:5( D 3 D_3 D3)),那么按照公式,我们首先得到总体的计算公式以及变换计算如下:

g ( D , A 1

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值