umd云计算之简述

      今天初步研究了University of Maryland的云计算的情况,跟踪了名不见经传的Jimmy Lin 。国外的研究都是小伙子当道啊,老头们退居二线。国内出头露面的全是老头子,小伙子们全是在背后当苦力。Jimmy Lin的详细信息,可以从点击这个链接

       Jimmy Lin的研究主要基于MapReduce了,不同于一些弄网格计算出身的学院派,主要project有Cloud9 Ivory 。他的思想从他的课程文档 中得以体现。

       首先他讨论了web-scale application的一些本质特点,无非是data-intensive和processing-intensive,应该翻译为数据密集和处理密集吧。数据的密集导致了large data center的诞生,一个明显的趋势是计算资源,存储资源在大型数据中心的集中化。从而也产生了以下几个重要的issue:Redundancy, Efficiency, Utilization, Management。合理组织这些的一个关键技术在于virtualization。

virtualization

virtualization

 

          然后他讨论了三种computing/delivery model,NIST对云计算定义的草案 中也有类似的定义,详细的解释则可以参考这篇文档。

                1. IaaS: Infrastructure as a Service。如:Amazon EC2

                2. PaaS: Platform as a Service。如:Google App Engine

                3. Saas: Software as a Service。如:Google Map等

          他将MapReduce作为云计算的后端,Ajax作为云计算的前端,云计算的核心采取Amazon的EC2和用于存储的S3。

 

          最后他将所有的计算归结为两个问题:Divide and Conquer, Throwing more hardware at the problem。

divide and conquer

divide and conquer

 

              这里的并行计算模型所引入的根本问题,总的来说是两种:1. 不同worker间的通信,2.共享资源的访问。已有的传统的并行计算模型如:Master/Slaves, Producer/Consumer Flow, Work Queues,

Master/Slaves

Master/Slaves

 

Producer Consumer Flow

Producer/Consumer Flow

 

Work Queues

Work Queues

 

               于是他采用了MapReduce,综合上述基本模型,以构建一个同步的系统。下一步将我们将进入MapReduce的研究,并使用相关的实现版本以及Maryland内部实现的应用。具体的一些实现版本可参考该链接

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值