[深度学习] 深度学习基本网络结构

本文介绍了深度学习的基本网络结构,包括AlexNet的8层结构,VGG-Net的加深网络设计,GoogLeNet的创新架构,Network in network的概念,以及残差网络如何解决深度学习中的梯度消失问题。每种网络结构的特点和对后续发展的影响被详细阐述。
摘要由CSDN通过智能技术生成

AlexNet

这幅图片是AlexNet的模型。文章发表的时候是2012年,当时的GPU是 GTX580,所以使用了两块GPU,但是目前的硬件水平使用一块GPU就足够了。AlexNet获得了12年ImageNet比赛的第一名(top-5 error of 16% compared to runner-up with 26% error)。AlexNet和LeNet网络结构很相似,只是更加深和大。
图片:这里写图片描述
AlexNet 共有8层。其中前五层为卷积层,后三层为全连接层。最后一个全连接层具有输出1000个输出的softmax。

AlexNet分层结构

这里写图片描述
第一层
输入图片是224*224*3, 表示长宽是224个像素,RGB三通道, 所以要乘以3

然后采用了9611*11*3 的filter。stride为4(步长为4)的设置下。对输入图像进行卷积操作。所以进行卷积操作后,输出变成了55*55*96 。其中根据的公式是(图片的长或者宽 - 核长)/ 步长 + 1

然后经过激活函数ReLu,再进行池化操作,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值