AlexNet
这幅图片是AlexNet的模型。文章发表的时候是2012年,当时的GPU是 GTX580,所以使用了两块GPU,但是目前的硬件水平使用一块GPU就足够了。AlexNet获得了12年ImageNet比赛的第一名(top-5 error of 16% compared to runner-up with 26% error)。AlexNet和LeNet网络结构很相似,只是更加深和大。
图片:
AlexNet 共有8层。其中前五层为卷积层,后三层为全连接层。最后一个全连接层具有输出1000个输出的softmax。
AlexNet分层结构
第一层
输入图片是224*224*3
, 表示长宽是224
个像素,RGB三通道, 所以要乘以3
然后采用了96
个11*11*3
的filter。stride为4
(步长为4)的设置下。对输入图像进行卷积操作。所以进行卷积操作后,输出变成了55*55*96
。其中根据的公式是(图片的长或者宽 - 核长)/ 步长 + 1
。
然后经过激活函数ReLu,再进行池化操作,