期望, 方差, 协方差,标准差

本文详细介绍了随机变量的核心概念——期望、方差和标准差。期望作为预测随机事件平均情况的指标,分为离散和连续两种情况。方差衡量数据的离散程度,包括统计学方差和样本方差。标准差是方差的算术平方根,提供了与均值单位一致的离散度度量。同时,文章还提及了协方差,用于分析多维数据中变量的相关性,并介绍了相关系数的概念。
摘要由CSDN通过智能技术生成

#期望, 方差, 协方差,标准差

期望

概率论中描述一个随机事件中的随机变量的平均值的大小可以用数学期望这个概念,数学期望的定义是实验中可能的结果的概率乘以其结果的总和。

定义

设P(x) 是一个离散概率分布,自变量的取值范围为{ x 1 , x 2 , . . . , x n x_1, x_2,..., x_n x1,x2,...,xn}。其期望被定义为:
E ( x ) = ∑ k = 1 n x k P ( x k ) E(x) = \sum_{k=1}^{n}{x_kP(x_k)} E(x)=k=1nxkP(xk)
设P(x) 是一个连续概率密度函数,其期望为:
E ( x ) = ∫ − ∞ + ∞ x p ( x )   d x E(x) = \int_{-\infty}^{+\infty}{xp(x) \,{\rm d}x} E(x)=+xp(x)dx

###性质

期望服从线性性质,因此线性运算的期望等于期望的线性运算。
E ( a x + b y + c ) = a E ( x ) + b E ( y ) + c E(ax + by +c) = aE(x) + bE(y) + c E(ax+by+c)=aE(x)+bE(y)+c
这个性质可以推广:
E ( ∑ k = 1 n a i x i + c ) = ∑ k = 1 n a i E ( x i ) + c E(\sum_{k=1}^{n}{a_ix_i +c})= \sum_{k=1}^n{a_iE(x_i)}+c E(k=1naixi+c)=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值