高光谱数据集,论文笔记,图像融合代码汇总

目录

一、论文笔记:

图像融合

高光谱多光谱图像融合

多聚焦图像融合

多分辨率图像融合

 超分辨率

网络优化

二、数据集:

高光谱数据集网站

图像数据集网站

多聚焦图像

医学图像

真彩色图像

红外与可见光图像

三、代码 

四、常用工具

(一)ENVI


一、论文笔记:

图像融合

  1. GDD无监督图像对融合 Guided Deep Decoder: Unsupervised Image Pair Fusion代码

  2. 具有结构张量表示的无监督深度图像融合Unsupervised Deep Image Fusion With Structure Tensor Representations 代码
  • 高光谱多光谱图像融合

  1. 无监督多注意力引导网络用于高光谱和多光谱图像融合UMAG-Net: A New Unsupervised Multi-attention-guided Network for Hyperspectral and Multispectral Image Fusion在这里插入图片描述
  2. 用于高光谱和多用于高光谱和多光谱图像融合的基于物理的具有迭代细化单元的GANPhysics-based GAN with Iterative Refinement Unit for Hyperspectral and Multispectral Image Fusion
  3. 用于半盲高光谱和多光谱图像融合的非局部稀疏张量分解  Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion
  4. 基于双流融合网络的遥感图像融合 Remote sensing image fusion based on two-stream fusion network
  5. 具有深度先验的高光谱泛锐化(HPDP)Hyperspectral Pansharpening With Deep Priors
  6. 一种新的基于对抗性的高光谱和多光谱图像融合方法 A Novel Adversarial Based Hyperspectral and Multispectral Image Fusion
  7. 基于自适应响应函数学习的耦合卷积神经网络在高光谱超分辨中的应用 Coupled Convolutional Neural Network With Adaptive Response Function Learning for Unsupervised Hyperspectral Super Resolution
  8. 频谱分治的多光谱和高光谱图像融合方法 A Band Divide-and-Conquer Multispectral and Hyperspectral Image Fusion Method
  9. 基于CNN的Landsat 8全色与多光谱图像融合的泛锐化方法
  10. 基于元分析思想的遥感图像泛锐化方法综述:实践探讨与挑战Review of the Pansharpening Methods for Remote Sensing Images Based on the Idea of Meta-analysis: Practical Discussion and Challenges
  11. 基于深层注意力网络的高光谱与多光谱图像融合Deep Attention Network (Change_ZH的论文笔记
  • 多聚焦图像融合

  1. 用于多聚焦图像融合的全局特征编码GEU网Global-feature Encoding U-Net (GEU-Net) for Multi-focus Image Fusion 
  • 多分辨率图像融合

  1. DDcGAN:一种用于多分辨率图像融合的双鉴别器条件生成对抗网络A dual Discriminator Conditional Generative Adersarial Network for Multi-Resolution Image Fusion 
  • 图像分类

  • 高光谱分类 

  1. 使用Transformer重新思考高光谱图像分类问题SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers代码:https://github.com/danfenghong/ IEEETGRSSpectralFormer
  • 超分辨率

  • 单图高光谱超分
  1. 高光谱图像超分辨率空间谱先验学习 Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery 代码
  2. 基于对抗学习的波段注意力的高光谱图像超分辨率Hyperspectral Image Super-Resolution by Band Attention Through Adversarial Learning
  3. 用于高光谱图像超分辨率的光谱分组和注意力驱动的残差密集网络A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution
  4. 深度学习的图像超分辨率(综述)Deep Learning for Image Super-Resolution
  • 单图像超分
  1.  用于轻质图像超分辨率的残差特征蒸馏网络Residual Feature Distillation Network for Lightweight Image Super-Resolution
  2. 具有多注意力层的超轻量级图像超分辨率Ultra Lightweight Image Super-Resolution with Multi-Attention Layers 代码在这里插入图片描述
  • 有参考图像超分
  1. MASA-SR:匹配加速和空间自适应用于有参考图像超分辨率MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution
  • 网络优化

  1.  双多尺度注意网络:DMSANet: Dual Multi Scale Attention Network CVPR2021在这里插入图片描述
  2. 坐标注意力以实现高效的移动网络设计Coordinate Attention for Efficient Mobile Network Design



二、数据集

高光谱数据集网站

CAVE | Projects: Multispectral Image DatabaseMultispectral Image Databasehttps://www.cs.columbia.edu/CAVE/databases/multispectral/

Harvard数据集http://Statistics of Real-World Hyperspectral Images



2018 IEEE GRSS Data Fusion Challenge – Fusion of Multispectral LiDAR and Hyperspectral Data

[高光谱数据集库RSLAB]

自然场景的高光谱图像 - 2002(David H. Foster)
自然场景的高光谱图像 - 2004(David H. Foster)
五个多光谱成像数据集


spacenet

  1. Area of Interest 1 (AOI 1) - Location: Rio de Janeiro. 50cm imagery collected from DigitalGlobe’s WorldView-2 satellite. The dataset includes building footprints and 8-band multispectral data.
  2. Area of Interest 2 (AOI 2) - Location: Vegas. 30cm imagery collected from DigitalGlobe’s WorldView-3 satellite. The dataset includes building footprints and 8-band multispectral data.
  3. Area of Interest 3 (AOI 3) - Location: Paris. 30cm imagery collected from DigitalGlobe’s WorldView-3 satellite. The dataset includes building footprints and 8-band multispectral data.
  4. Area of Interest 4 (AOI 4) - Location: Shanghai. 30cm imagery collected from DigitalGlobe’s WorldView-3 satellite. The dataset includes building footprints and 8-band multispectral data.
  5. Area of Interest 5 (AOI 5) - Location: Khartoum. 30cm imagery collected from DigitalGlobe’s WorldView-3 satellite. The dataset includes building footprints and 8-band multispectral data.
  6. Area of Interest 6 (AOI 6) - Location: Atlanta 27 50cm images collected from DigitalGlobes’ WorldView-2 satellite. The dataset includes building footprints and 8-band multi-spectral data


15个免费卫星遥感数据源
用于语义分割的高分辨率多光谱数据集
worldview2
ICVL
Chikusei

雄安新区(马蹄湾村)航空高光谱遥感影像分类数据集

Washington DC数据

Urban数据

Pavia University和 Pavia Center数据

Houston数据

HyRANK数据

Indian Pine数据

Salinas Valley数据

DFC2018 Houston数据

KSC数据集

Cuprite数据

Botswana数据

landsat数据免费下载指南

图像数据集网站

CVonline:图像数据库


YACVID

TNO Image Fusion Dataset

多聚焦图像

Multi Focus Photography Contest (19726), Pictures Page 1 - Pxleyes.com

Mansour Nejati | Lytro Multi-focus Dataset

Multifocus Image Fusion

https://github.com/sametaymaz/Multi-focus-Image-Fusion-Dataset

Standard images for multifocus image fusion - File Exchange - MATLAB Central

医学图像

www.med.harvard.edu/aanlib/home.html

真彩色图像

True Color Kodak Images

红外与可见光图像

TNO Image Fusion Dataset

OTCBVS

(D3) target tracking in multi-sensor video

Visible-Infrared Database :: Image Fusion

https://www.goes.noaa.gov

https://ivrl.epfl.ch/research-2/research-downloads/supplementary_material-cvpr11-index-html/

在这位博主Daniel__Shi文章基础上补充了一些数据集


三、代码 

图像超分

1、MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution

高光谱超分

1、A spatial-spectral prior deep network for hyperspectral image super-resolution

 全色锐化

1、Pansharpening via Detail Injection Based Convolutional Neural Networks

2、PSGan: A GAN-based PanSharpening model

3、Target-Adaptive CNN Based Pansharpening

图像融合

1、FusionDN (AAAI 2020): A Unified Densely Connected Network for Image Fusion

2、U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks

3、Convolutional Autoencoder-Based Multispectral Image Fusion

图像去噪

1、Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising

Py_pansharpening 具有一些经典方法的Python版本pansharpening工具箱。 到目前为止,该工具箱实现了以下算法

  • Brovey
  • PCA
  • IHS
  • SFIM
  • GS
  • Wavelet
  • MTF-GLP
  • MTF-GLP-HPM
  • GSA
  • CNMF
  • GFPCA
  • PNN
  • PanNet

四、常用工具

(一)ENVI

软件与扩展包:

  1. ENVI5.3安装教程(含软件下载)
  2. ENVI扩展工具:栅格图像批处理工具包  功能包括:批量正射校正(全色/多光谱)、批量图像融合、多光谱与全色批量辐射定标、快速大气校正、栅格裁剪、投影转换、转换存储顺序、图像配准、坏点修复、指数计算、波段运算、将加载在视图中的栅格图层输出为字节型TIFF文件、格式转换、设置忽略值 

教程资料:

  1. ENVI入门教程

  2. ENVI下Pleiades数据的读取

  3. 培训资料大全(含高分1数据)

评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有梦想的炸豆皮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值