用于多聚焦图像融合的全局特征编码GEU网论文笔记

Global-feature Encoding U-Net (GEU-Net) for Multi-focus Image Fusion

用于多聚焦图像融合的全局特征编码GEU网

与传统方法相比,基于卷积神经网络的多聚焦图像融合方法从源图像中学习聚焦图,大大提高了融合性能。然而,这些方法尚未达到令人满意的融合结果,因为卷积运算过于关注局部区域、将生成聚焦图作为局部分类(将每个像素分类为聚焦或非聚集类别)问题。 提出了一种用于多聚焦图像融合的全局特征编码的GEU网络。在所提出的全局优化网络中,使用了U-Net网络将聚焦图的生成作为一个全局两类分割任务,从全局角度分割聚焦和散焦区域。为了提高U-Net的全局特征编码能力,引入了全局特征金字塔提取模块(GFPE)和全局注意连接上采样模块(GACU),以有效提取和利用全局语义和边缘信息。在损失函数中加入感知损失,构建大规模数据集以提高GEU网络的性能。 实验结果表明,所提出的GEU网络在人类视觉质量、客观评价和网络复杂度方面均优于现有的融合方法

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页