倍增+Floyd最短路--luoguP1613 跑路

传送门
看到 2 k 2^k 2k就是妥妥的倍增 q w q qwq qwq,但是一开始的时候倍增数组设成了 g [ i ] [ j ] g[i][j] g[i][j]表示从 i i i 2 j 2^j 2j步到的点,这样的话是有问题的,因为之前走过的点可能会被覆盖掉,在之后它就遗失了
所以要设 g [ i ] [ j ] [ k ] g[i][j][k] g[i][j][k]表示从 i i i j j j走了 2 k 2^k 2k步是否可达
然后可以用 f l o y d floyd floyd最短路求一下从 1 1 1 n n n的最短路就好了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue> 
#define N 55
#define M 10005
using namespace std;
int n,m,a[N][N],f[N][N],g[N][N][65];
queue<int> q;

inline int rd(){
	int x=0,f=1;char c=' ';
	while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
	while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
	return x*f;
}

int main(){
	n=rd(); m=rd(); memset(f,0x3f,sizeof f);
	for(int i=1;i<=m;i++){
		int x=rd(),y=rd();
		a[x][y]=1; g[x][y][0]=1; f[x][y]=1;
	}
	for(int t=1;t<63;t++)
		for(int k=1;k<=n;k++)
			for(int i=1;i<=n;i++)
				for(int j=1;j<=n;j++)
				if(g[i][k][t-1] && g[k][j][t-1]){
					g[i][j][t]=1; f[i][j]=1;
				}
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
	printf("%d\n",f[1][n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值