1. 综述
原文:Image Super-Resolution Using Deep Convolutional Networks
这一篇与更早之前的另一篇很相似(Learning a Deep Convolutional Network for Image Super-Resolution)。不同之处是,本篇增加了以下几个重点:
- 在非线性映射层(non-linear mapping layer)引入更大的filter尺寸,并探索增加层数。
- 同时处理三个颜色通道, YCbCr或RGB。通过实验证明比单通道的性能更好。
- 更多的实验数据对比,更详细的结果分析。测试数据集从Set5, Set14扩展到BSD200
- 比较了最近发表的一些方法,依然吊打他们
2. 相关工作
传统的SR(Super-Resolution)算法可以分为四类:
- Prediction models
- Edge based methods
- Image statistical methods
- Patch based or Example-based
其中,Example-based方法性能最好。[46]这篇综述文章进行了总结。
3. 调参
- 权值初始化,高斯分布 m e a n = 0 , s t d = 0.001 mean=0, std=0.001 mean=0,std=0.001
- 学习率,前两层0.0001, 最后一层0.00001
- Loss函数默认使用MSE,这样可以得到更好的PSNR.当然,如果有更好的度量标准,也可以研究使用其他损失函数。
- 优化器使用随机梯度下降法
- 较好的参数配置是: c = 3 , f 1 = 9 , f 2 = 5 , f 3 = 5