SRCNN笔记二

1. 综述

原文:Image Super-Resolution Using Deep Convolutional Networks
这一篇与更早之前的另一篇很相似(Learning a Deep Convolutional Network for Image Super-Resolution)。不同之处是,本篇增加了以下几个重点:

  • 在非线性映射层(non-linear mapping layer)引入更大的filter尺寸,并探索增加层数。
  • 同时处理三个颜色通道, YCbCr或RGB。通过实验证明比单通道的性能更好。
  • 更多的实验数据对比,更详细的结果分析。测试数据集从Set5, Set14扩展到BSD200
  • 比较了最近发表的一些方法,依然吊打他们

2. 相关工作

传统的SR(Super-Resolution)算法可以分为四类:

  • Prediction models
  • Edge based methods
  • Image statistical methods
  • Patch based or Example-based
    其中,Example-based方法性能最好。[46]这篇综述文章进行了总结。

3. 调参

  • 权值初始化,高斯分布 m e a n = 0 , s t d = 0.001 mean=0, std=0.001 mean=0,std=0.001
  • 学习率,前两层0.0001, 最后一层0.00001
  • Loss函数默认使用MSE,这样可以得到更好的PSNR.当然,如果有更好的度量标准,也可以研究使用其他损失函数。
  • 优化器使用随机梯度下降法
  • 较好的参数配置是: c = 3 , f 1 = 9 , f 2 = 5 , f 3 = 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superbin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值